Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = human-operated avatars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8159 KiB  
Article
A Combined Mirror–EMG Robot-Assisted Therapy System for Lower Limb Rehabilitation
by Florin Covaciu, Bogdan Gherman, Calin Vaida, Adrian Pisla, Paul Tucan, Andrei Caprariu and Doina Pisla
Technologies 2025, 13(6), 227; https://doi.org/10.3390/technologies13060227 - 3 Jun 2025
Viewed by 2093
Abstract
This paper presents the development and initial evaluation of a novel protocol for robot-assisted lower limb rehabilitation. It integrates dual-modal patient interaction, employing mirror therapy and an auto-adaptive EMG-driven control system, designed to enhance lower limb rehabilitation in patients with hemiparesis impairments. The [...] Read more.
This paper presents the development and initial evaluation of a novel protocol for robot-assisted lower limb rehabilitation. It integrates dual-modal patient interaction, employing mirror therapy and an auto-adaptive EMG-driven control system, designed to enhance lower limb rehabilitation in patients with hemiparesis impairments. The system features a robotic platform specifically engineered for lower limb rehabilitation, which operates in conjunction with a virtual reality (VR) environment. This immersive environment comprises a digital twin of the robotic system alongside a human avatar representing the patient and a set of virtual targets to be reached by the patient. To implement mirror therapy, the proposed protocol utilizes a set of inertial sensors placed on the patient’s healthy limb to capture real-time motion data. The auto-adaptive protocol takes as input the EMG signals (if any) from sensors placed on the impaired limb and performs the required motions to reach the virtual targets in the VR application. By synchronizing the motions of the healthy limb with the digital twin in the VR space, the system aims to promote neuroplasticity, reduce pain perception, and encourage engagement in rehabilitation exercises. Initial laboratory trials demonstrate promising outcomes in terms of improved motor function and subject motivation. This research not only underscores the efficacy of integrating robotics and virtual reality in rehabilitation but also opens avenues for advanced personalized therapies in clinical settings. Future work will investigate the efficiency of the proposed solution using patients, thus demonstrating clinical usability, and explore the potential integration of additional feedback mechanisms to further enhance the therapeutic efficacy of the system. Full article
Show Figures

Figure 1

23 pages, 5646 KiB  
Article
Enhancing Security and Authenticity in Immersive Environments
by Rebecca Acheampong, Dorin-Mircea Popovici, Titus Balan, Alexandre Rekeraho and Manuel Soto Ramos
Information 2025, 16(3), 191; https://doi.org/10.3390/info16030191 - 1 Mar 2025
Viewed by 1060
Abstract
Immersive environments have brought a great transformation in human–computer interaction by enabling realistic and interactive experiences within simulated or augmented spaces. In these immersive environments, virtual assets such as custom avatars, digital artwork, and virtual real estate play an important role, often holding [...] Read more.
Immersive environments have brought a great transformation in human–computer interaction by enabling realistic and interactive experiences within simulated or augmented spaces. In these immersive environments, virtual assets such as custom avatars, digital artwork, and virtual real estate play an important role, often holding a substantial value in both virtual and real worlds. However, this value also makes them attractive to fraudulent activities. As a result, ensuring the authenticity and integrity of virtual assets is of concern. This study proposes a cryptographic solution that leverages digital signatures and hash algorithms to secure virtual assets in immersive environments. The system employs RSA-2048 for signing and SHA-256 hashing for binding the digital signature to the asset’s data to prevent tampering and forgery. Our experimental evaluation demonstrates that the signing process operates with remarkable efficiency; over ten trials, the signing time averaged 17.3 ms, with a narrow range of 16–19 ms and a standard deviation of 1.1 ms. Verification times were near-instantaneous (0–1 ms), ensuring real-time responsiveness. Moreover, the signing process incurred a minimal memory footprint of approximately 4 KB, highlighting the system’s suitability for resource-constrained VR applications. Simulations of tampering and forgery attacks further validated the system’s capability to detect unauthorized modifications, with a 100% detection rate observed across multiple trials. While the system currently employs RSA, which may be vulnerable to quantum computing in the future, its modular design ensures crypto-agility, allowing for the integration of quantum-resistant algorithms as needed. This work not only addresses immediate security challenges in immersive environments but also lays the groundwork for broader applications, including regulatory compliance for financial virtual assets. Full article
(This article belongs to the Collection Augmented Reality Technologies, Systems and Applications)
Show Figures

Figure 1

13 pages, 1871 KiB  
Article
Exploring the Psychological and Physiological Effects of Operating a Telenoid: The Preliminary Assessment of a Minimal Humanoid Robot for Mediated Communication
by Aya Nakae, Hani M. Bu-Omer, Wei-Chuan Chang, Chie Kishimoto and Hidenobu Sumioka
Sensors 2024, 24(23), 7541; https://doi.org/10.3390/s24237541 - 26 Nov 2024
Cited by 1 | Viewed by 1429
Abstract
Background: As the Internet of Things (IoT) expands, it enables new forms of communication, including interactions mediated by teleoperated robots like avatars. While extensive research exists on the effects of these devices on communication partners, there is limited research on the impact on [...] Read more.
Background: As the Internet of Things (IoT) expands, it enables new forms of communication, including interactions mediated by teleoperated robots like avatars. While extensive research exists on the effects of these devices on communication partners, there is limited research on the impact on the operators themselves. This study aimed to objectively assess the psychological and physiological effects of operating a teleoperated robot, specifically Telenoid, on its human operator. Methods: Twelve healthy participants (2 women and 10 men, aged 18–23 years) were recruited from Osaka University. Participants engaged in two communication sessions with a first-time partner: face-to-face and Telenoid-mediated. Telenoid is a minimalist humanoid robot teleoperated by a participant. Blood samples were collected before and after each session to measure hormonal and oxidative markers, including cortisol, diacron reactive oxygen metabolites (d-ROMs), and the biological antioxidat activity of plasma (BAP). Psychological stress was assessed using validated questionnaires (POMS-2, HADS, and SRS-18). Results: A trend of a decrease in cortisol levels was observed during Telenoid-mediated communication, whereas face-to-face interactions showed no significant changes. Oxidative stress, measured by d-ROMs, significantly increased after face-to-face interactions but not in Telenoid-mediated sessions. Significant correlations were found between oxytocin and d-ROMs and psychological stress scores, particularly in terms of helplessness and total stress measures. However, no significant changes were observed in other biomarkers or between the two conditions for most psychological measures. Conclusions: These findings suggest that cortisol and d-ROMs may serve as objective biomarkers for assessing psychophysiological stress during robot-mediated communication. Telenoid’s minimalist design may help reduce social pressures and mitigate stress compared to face-to-face interactions. Further research with larger, more diverse samples and longitudinal designs is needed to validate these findings and explore the broader impacts of teleoperated robots. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

23 pages, 1202 KiB  
Article
An Exploratory Study of the Potential of Online Counseling for University Students by a Human-Operated Avatar Counselor
by Keita Kiuchi, Hidehiro Umehara, Koushi Irizawa, Xin Kang, Masahito Nakataki, Minoru Yoshida, Shusuke Numata and Kazuyuki Matsumoto
Healthcare 2024, 12(13), 1287; https://doi.org/10.3390/healthcare12131287 - 27 Jun 2024
Cited by 1 | Viewed by 1870
Abstract
Recently, the use of digital technologies, such as avatars and virtual reality, has been increasingly explored to address university students’ mental health issues. However, there is limited research on the advantages and disadvantages of counselors using avatars in online video counseling. Herein, 25 [...] Read more.
Recently, the use of digital technologies, such as avatars and virtual reality, has been increasingly explored to address university students’ mental health issues. However, there is limited research on the advantages and disadvantages of counselors using avatars in online video counseling. Herein, 25 university students were enrolled in a pilot online counseling session with a human counselor-controlled avatar, and asked about their emotional experiences and impressions of the avatar and to provide qualitative feedback on their communication experience. Positive emotions during the session were associated with impressions of the avatar’s intelligence and likeability. The anthropomorphism, animacy, likeability, and intelligent impressions of the avatar were interrelated, indicating that the avatar’s smile and the counselor’s expertise in empathy and approval may have contributed to these impressions. However, no associations were observed between participant experiences and their prior communication with avatars, or between participant experiences and their gender or the perceived gender of the avatar. Accordingly, recommendations for future practice and research are provided. Accumulating practical and empirical findings on the effectiveness of human-operated avatar counselors is crucial for addressing university students’ mental health issues. Full article
Show Figures

Figure 1

41 pages, 3430 KiB  
Article
Electromyography-Based Biomechanical Cybernetic Control of a Robotic Fish Avatar
by Manuel A. Montoya Martínez, Rafael Torres-Córdoba, Evgeni Magid and Edgar A. Martínez-García
Machines 2024, 12(2), 124; https://doi.org/10.3390/machines12020124 - 9 Feb 2024
Viewed by 2315
Abstract
This study introduces a cybernetic control and architectural framework for a robotic fish avatar operated by a human. The behavior of the robot fish is influenced by the electromyographic (EMG) signals of the human operator, triggered by stimuli from the surrounding objects and [...] Read more.
This study introduces a cybernetic control and architectural framework for a robotic fish avatar operated by a human. The behavior of the robot fish is influenced by the electromyographic (EMG) signals of the human operator, triggered by stimuli from the surrounding objects and scenery. A deep artificial neural network (ANN) with perceptrons classifies the EMG signals, discerning the type of muscular stimuli generated. The research unveils a fuzzy-based oscillation pattern generator (OPG) designed to emulate functions akin to a neural central pattern generator, producing coordinated fish undulations. The OPG generates swimming behavior as an oscillation function, decoupled into coordinated step signals, right and left, for a dual electromagnetic oscillator in the fish propulsion system. Furthermore, the research presents an underactuated biorobotic mechanism of the subcarangiform type comprising a two-solenoid electromagnetic oscillator, an antagonistic musculoskeletal elastic system of tendons, and a multi-link caudal spine composed of helical springs. The biomechanics dynamic model and control for swimming, as well as the ballasting system for submersion and buoyancy, are deduced. This study highlights the utilization of EMG measurements encompassing sampling time and μ-volt signals for both hands and all fingers. The subsequent feature extraction resulted in three types of statistical patterns, namely, Ω,γ,λ, serving as inputs for a multilayer feedforward neural network of perceptrons. The experimental findings quantified controlled movements, specifically caudal fin undulations during forward, right, and left turns, with a particular emphasis on the dynamics of caudal fin undulations of a robot prototype. Full article
(This article belongs to the Special Issue Biorobotic Locomotion and Cybernetic Control)
Show Figures

Figure 1

24 pages, 10232 KiB  
Article
A Wearable Upper Limb Exoskeleton for Intuitive Teleoperation of Anthropomorphic Manipulators
by Liang Zhao, Tie Yang, Yang Yang and Peng Yu
Machines 2023, 11(4), 441; https://doi.org/10.3390/machines11040441 - 30 Mar 2023
Cited by 9 | Viewed by 3978
Abstract
Teleoperation technology combines the strength and accuracy of robots with the perception and cognition abilities of human experts, allowing the robots to work as an avatar of the operator in dangerous environments. The motion compatibility and intuitiveness of the human–machine interface directly affect [...] Read more.
Teleoperation technology combines the strength and accuracy of robots with the perception and cognition abilities of human experts, allowing the robots to work as an avatar of the operator in dangerous environments. The motion compatibility and intuitiveness of the human–machine interface directly affect the quality of teleoperation. However, many motion capture methods require special working environments or need bulky mechanisms. In this research, we proposed a wearable, lightweight, and passive upper limb exoskeleton, which takes intuitiveness and human-machine compatibility as a major concern. The upper limb pose estimation and teleoperation mapping control methods based on the exoskeleton are also discussed. Experimental results showed that by the help of the upper limb exoskeleton, people can achieve most areas of the normal range of motion. The proposed mapping control methods were verified on a 14-DOF anthropomorphic manipulator and showed good performance in teleoperation tasks. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

Back to TopTop