Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = host–microbiota symbiosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1526 KiB  
Review
Microbiota-Accessible Borates as Novel and Emerging Prebiotics for Healthy Longevity: Current Research Trends and Perspectives
by Andrei Biţă, Ion Romulus Scorei, Marvin A. Soriano-Ursúa, George Dan Mogoşanu, Ionela Belu, Maria Viorica Ciocîlteu, Cristina Elena Biţă, Gabriela Rău, Cătălina Gabriela Pisoschi, Maria-Victoria Racu, Iurie Pinzaru, Alejandra Contreras-Ramos, Roxana Kostici, Johny Neamţu, Viorel Biciuşcă and Dan Ionuţ Gheonea
Pharmaceuticals 2025, 18(6), 766; https://doi.org/10.3390/ph18060766 - 22 May 2025
Viewed by 1698
Abstract
Precision nutrition-targeted gut microbiota (GM) may have therapeutic potential not only for age-related diseases but also for slowing the aging process and promoting longer healthspan. Recent studies have shown that restoring a healthy symbiosis of GM by counteracting dysbiosis (DYS) through precise nutritional [...] Read more.
Precision nutrition-targeted gut microbiota (GM) may have therapeutic potential not only for age-related diseases but also for slowing the aging process and promoting longer healthspan. Recent studies have shown that restoring a healthy symbiosis of GM by counteracting dysbiosis (DYS) through precise nutritional intervention is becoming a major target for extending healthspan. Microbiota-accessible borate (MAB) complexes, such as boron (B)–pectins (rhamnogalacturonan–borate) and borate–phenolic esters (diester chlorogenoborate), have a significant impact on healthy host–microbiota symbiosis (HMS). The mechanism of action of MABs involves the biosynthesis of the autoinducer-2–borate (AI-2B) signaling molecule, B fortification of the mucus gel layer by the MABs diet, inhibition of pathogenic microbes, and reversal of GM DYS, strengthening the gut barrier structure, enhancing immunity, and promoting overall host health. In fact, the lack of MAB complexes in the human diet causes reduced levels of AI-2B in GM, inhibiting the Firmicutes phylum (the main butyrate-producing bacteria), with important effects on healthy HMS. It can now be argued that there is a relationship between MAB-rich intake, healthy HMS, host metabolic health, and longevity. This could influence the deployment of natural prebiotic B-based nutraceuticals targeting the colon in the future. Our review is based on the discovery that MAB diet is absolutely necessary for healthy HMS in humans, by reversing DYS and restoring eubiosis for longer healthspan. Full article
Show Figures

Graphical abstract

20 pages, 2103 KiB  
Review
Naturally Occurring Microbiota-Accessible Borates: A Focused Minireview
by Andrei Biţă, Ion Romulus Scorei, George Dan Mogoşanu, Ludovic Everard Bejenaru, Cristina Elena Biţă, Venera Cristina Dinescu, Gabriela Rău, Maria Viorica Ciocîlteu, Cornelia Bejenaru and Octavian Croitoru
Inorganics 2024, 12(12), 308; https://doi.org/10.3390/inorganics12120308 - 26 Nov 2024
Cited by 1 | Viewed by 1578
Abstract
Recently, we discovered and proved the essentiality of organic boron species (OBS), such as borate–pectic polysaccharides and borate–phenolic esters, for healthy symbiosis (HS) between microbiota and human/animal (H/A) host. The essentiality of OBS will provide new options for B supplementation in H/A nutrition [...] Read more.
Recently, we discovered and proved the essentiality of organic boron species (OBS), such as borate–pectic polysaccharides and borate–phenolic esters, for healthy symbiosis (HS) between microbiota and human/animal (H/A) host. The essentiality of OBS will provide new options for B supplementation in H/A nutrition for a healthy and long life. New knowledge on the essentiality of naturally occurring microbiota-accessible borate species for HS between microbiota and H/A host will allow the use of natural B-based dietary supplements to target the H/A microbiome (the gut, skin, oral, scalp, and vaginal microbiome). In the literature, there is evidence that certain bacteria need B (autoinducer-2 borate) for communication and our preliminary data show that HS takes place when the colonic mucus gel layer contains B. Subsequently, OBS become novel prebiotic candidates and target the colon as novel colonic foods. Full article
Show Figures

Figure 1

32 pages, 812 KiB  
Review
Microorganism Contribution to Mass-Reared Edible Insects: Opportunities and Challenges
by Joachim Carpentier, Linda Abenaim, Hugo Luttenschlager, Kenza Dessauvages, Yangyang Liu, Prince Samoah, Frédéric Francis and Rudy Caparros Megido
Insects 2024, 15(8), 611; https://doi.org/10.3390/insects15080611 - 13 Aug 2024
Cited by 7 | Viewed by 3730
Abstract
The interest in edible insects’ mass rearing has grown considerably in recent years, thereby highlighting the challenges of domesticating new animal species. Insects are being considered for use in the management of organic by-products from the agro-industry, synthetic by-products from the plastics industry [...] Read more.
The interest in edible insects’ mass rearing has grown considerably in recent years, thereby highlighting the challenges of domesticating new animal species. Insects are being considered for use in the management of organic by-products from the agro-industry, synthetic by-products from the plastics industry including particular detoxification processes. The processes depend on the insect’s digestive system which is based on two components: an enzymatic intrinsic cargo to the insect species and another extrinsic cargo provided by the microbial community colonizing—associated with the insect host. Advances have been made in the identification of the origin of the digestive functions observed in the midgut. It is now evident that the community of microorganisms can adapt, improve, and extend the insect’s ability to digest and detoxify its food. Nevertheless, edible insect species such as Hermetia illucens and Tenebrio molitor are surprisingly autonomous, and no obligatory symbiosis with a microorganism has yet been uncovered for digestion. Conversely, the intestinal microbiota of a given species can take on different forms, which are largely influenced by the host’s environment and diet. This flexibility offers the potential for the development of novel associations between insects and microorganisms, which could result in the creation of synergies that would optimize or expand value chains for agro-industrial by-products, as well as for contaminants. Full article
(This article belongs to the Collection Edible Insects and Circular Economy)
Show Figures

Graphical abstract

12 pages, 1386 KiB  
Review
Decoding the Gut Microbiota–Gestational Diabetes Link: Insights from the Last Seven Years
by Luis Ricardo Balleza-Alejandri, Emiliano Peña-Durán, Alberto Beltrán-Ramírez, Africa Samantha Reynoso-Roa, Luis Daniel Sánchez-Abundis, Jesús Jonathan García-Galindo and Daniel Osmar Suárez-Rico
Microorganisms 2024, 12(6), 1070; https://doi.org/10.3390/microorganisms12061070 - 25 May 2024
Cited by 5 | Viewed by 2606
Abstract
The human microbiome, a complex ecosystem of bacteria, viruses, and protozoans living in symbiosis with the host, plays a crucial role in human health, influencing everything from metabolism to immune function. Dysbiosis, or an imbalance in this ecosystem, has been linked to various [...] Read more.
The human microbiome, a complex ecosystem of bacteria, viruses, and protozoans living in symbiosis with the host, plays a crucial role in human health, influencing everything from metabolism to immune function. Dysbiosis, or an imbalance in this ecosystem, has been linked to various health issues, including diabetes and gestational diabetes (GD). In diabetes, dysbiosis affects the function of adipose tissue, leading to the release of adipokines and cytokines, which increase inflammation and insulin resistance. During pregnancy, changes to the microbiome can exacerbate glucose intolerance, a common feature of GD. Over the past years, burgeoning insights into the gut microbiota have unveiled its pivotal role in human health. This article comprehensively reviews literature from the last seven years, highlighting the association between gut microbiota dysbiosis and GD, as well as the metabolism of antidiabetic drugs and the potential influences of diet and probiotics. The underlying pathophysiological mechanisms discussed include the impact of dysbiosis on systemic inflammation and the interplay with genetic and environmental factors. By focusing on recent studies, the importance of considering microbial health in the prevention and treatment of GD is emphasized, providing insights into future research directions and clinical applications to improve maternal–infant health outcomes. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

15 pages, 3047 KiB  
Article
Distinct Gastrointestinal and Reproductive Microbial Patterns in Female Holobiont of Infertility
by Ana T. Marcos, Maria J. Rus, Victoria Areal-Quecuty, Aurea Simon-Soro and José Manuel Navarro-Pando
Microorganisms 2024, 12(5), 989; https://doi.org/10.3390/microorganisms12050989 - 14 May 2024
Viewed by 2217
Abstract
The microbiota is in symbiosis with the human body as a holobiont. Infertility conditions affect the female reproductive tract (FRT) and its resident microbiota. However, a disturbance in homeostasis could influence the FRT and other distal body sites, such as the gastrointestinal tract [...] Read more.
The microbiota is in symbiosis with the human body as a holobiont. Infertility conditions affect the female reproductive tract (FRT) and its resident microbiota. However, a disturbance in homeostasis could influence the FRT and other distal body sites, such as the gastrointestinal tract (GIT). We included 21 patients with endometriosis and other infertility-associated diseases with clinical profiles and biological samples from the FRT (endometrium, endometrial fluid, and vagina), and GIT samples (oral and feces). We performed a 16S rRNA analysis of site-specific microbial communities and estimated diversity metrics. The study found body site-specific microbial patterns in the FRT–GIT. In both study groups, Lactobacillus was the most shared Amplicon Sequence Variant (ASV), a precise identifier of microbial sequences, between endometrial and vagina samples. However, shared Gardnerella and Enterobacteriaceae ASVs were linked to other conditions but not endometriosis. Remarkably, Haemophilus was a specific GIT-shared taxon in endometriosis cases. In conclusion, infertility influences distinctly the FRT and GIT microbiomes, with endometriosis showing unique microbial characteristics. We proposed the concept of ‘female holobiont’ as a community that comprises the host and microbes that must maintain overall homeostasis across all body sites to ensure a woman’s health. Insights into these microbial patterns not only advance our understanding of the pathophysiology of infertility but also open new avenues for developing microbe-based therapeutic interventions aimed at restoring microbial balance, thereby enhancing fertility prospects. Full article
(This article belongs to the Special Issue Gut Microbiota in DiseaseThird Edition)
Show Figures

Graphical abstract

24 pages, 1911 KiB  
Review
Interplay between Microbiota and γδ T Cells: Insights into Immune Homeostasis and Neuro-Immune Interactions
by Alaa A. Mohamed, Basel K. al-Ramadi and Maria J. Fernandez-Cabezudo
Int. J. Mol. Sci. 2024, 25(3), 1747; https://doi.org/10.3390/ijms25031747 - 1 Feb 2024
Cited by 8 | Viewed by 4877
Abstract
The gastrointestinal (GI) tract of multicellular organisms, especially mammals, harbors a symbiotic commensal microbiota with diverse microorganisms including bacteria, fungi, viruses, and other microbial and eukaryotic species. This microbiota exerts an important role on intestinal function and contributes to host health. The microbiota, [...] Read more.
The gastrointestinal (GI) tract of multicellular organisms, especially mammals, harbors a symbiotic commensal microbiota with diverse microorganisms including bacteria, fungi, viruses, and other microbial and eukaryotic species. This microbiota exerts an important role on intestinal function and contributes to host health. The microbiota, while benefiting from a nourishing environment, is involved in the development, metabolism and immunity of the host, contributing to the maintenance of homeostasis in the GI tract. The immune system orchestrates the maintenance of key features of host–microbe symbiosis via a unique immunological network that populates the intestinal wall with different immune cell populations. Intestinal epithelium contains lymphocytes in the intraepithelial (IEL) space between the tight junctions and the basal membrane of the gut epithelium. IELs are mostly CD8+ T cells, with the great majority of them expressing the CD8αα homodimer, and the γδ T cell receptor (TCR) instead of the αβ TCR expressed on conventional T cells. γδ T cells play a significant role in immune surveillance and tissue maintenance. This review provides an overview of how the microbiota regulates γδ T cells and the influence of microbiota-derived metabolites on γδ T cell responses, highlighting their impact on immune homeostasis. It also discusses intestinal neuro-immune regulation and how γδ T cells possess the ability to interact with both the microbiota and brain. Full article
(This article belongs to the Special Issue The Role of Microbiota in Immunity and Inflammation)
Show Figures

Figure 1

15 pages, 973 KiB  
Article
Diversity of Bacteria Associated with Guts and Gonads in Three Spider Species and Potential Transmission Pathways of Microbes within the Same Spider Host
by Yue Liu, Jia Liu, Xiaopan Zhang and Yueli Yun
Insects 2023, 14(10), 792; https://doi.org/10.3390/insects14100792 - 29 Sep 2023
Cited by 4 | Viewed by 2043
Abstract
Microbial symbiosis plays a crucial role in the ecological and evolutionary processes of animals. It is well known that spiders, with their unique and diverse predatory adaptations, assume an indispensable role in maintaining ecological balance and the food chain. However, our current understanding [...] Read more.
Microbial symbiosis plays a crucial role in the ecological and evolutionary processes of animals. It is well known that spiders, with their unique and diverse predatory adaptations, assume an indispensable role in maintaining ecological balance and the food chain. However, our current understanding of spider microbiomes remains relatively limited. The gut microbiota and gonad microbiota of spiders can both potentially influence their physiology, ecology, and behavior, including aspects such as digestion, immunity, reproductive health, and reproductive behavior. In the current study, based on high-throughput sequencing of the 16S rRNA V3 and V4 regions, we detected the gut and gonad microbiota communities of three spider species captured from the same habitat, namely, Eriovixia cavaleriei, Larinioides cornutus, and Pardosa pseudoannulata. In these three species, we observed that, at the phylum level classification, the gut and gonad of E. cavaleriei are primarily composed of Proteobacteria, while those of L. cornutus and P. pseudoannulata are primarily composed of Firmicutes. At the genus level of classification, we identified 372 and 360 genera from the gut and gonad bacterial communities. It is noteworthy that the gut and gonad bacterial flora of E. cavaleriei and L. cornutus were dominated by Wolbachia and Spiroplasma. Results show that there were no differences in microbial communities between females and males of the same spider species. Furthermore, there is similarity between the gut and ovary microbial communities of female spiders, implying a potential avenue for microbial transmission between the gut and gonad within female spiders. By comprehensively studying these two microbial communities, we can establish the theoretical foundation for exploring the relationship between gut and gonad microbiota and their host, as well as the mechanisms through which microbes exert their effects. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

19 pages, 5557 KiB  
Article
Evaluation of Tulasnella and Ceratobasidium as Biocontrol Agents of Fusarium Wilt on Vanilla planifolia
by Santiago Manrique-Barros, Nicola S. Flanagan, Erika Ramírez-Bejarano and Ana T. Mosquera-Espinosa
Agronomy 2023, 13(9), 2425; https://doi.org/10.3390/agronomy13092425 - 20 Sep 2023
Cited by 3 | Viewed by 2467
Abstract
Fusarium wilt, caused by the fungus Fusarium oxysporum f. sp. vanillae (Fov), is a disease that results in significant losses in commercial vanilla production. The genera Ceratobasidium (Ceratobasidiaceae) and Tulasnella (Tulasnellaceae), which are often reported as mutualistic symbionts in orchids, belong to the [...] Read more.
Fusarium wilt, caused by the fungus Fusarium oxysporum f. sp. vanillae (Fov), is a disease that results in significant losses in commercial vanilla production. The genera Ceratobasidium (Ceratobasidiaceae) and Tulasnella (Tulasnellaceae), which are often reported as mutualistic symbionts in orchids, belong to the form genus Rhizoctonia, a paraphyletic group of fungi with potential for pathogen biocontrol. We assayed the antagonistic properties of the form genus Rhizoctonia from the roots of neotropical orchids: two Tulasnella spp. isolates (Bv3 and Er1) and one Ceratobasidium sp. (Er19). In a dual culture, we found that form genus Rhizoctonia isolates can generate a biocontrol effect against Fusarium through the mechanisms of antibiosis and competition for space and nutrients. On histological observations, orchid root endophytes also demonstrated potential for mutualistic symbiosis development by establishing themselves on the surface and within the root tissue of Vanilla planifolia accessions multiplied in vitro (NSF021 and NSF092). However, in plant assays, the form genus Rhizoctonia isolates did not reduce symptom expression or disease development due to infection by Fov in the host. These results contribute to the knowledge of the interactions between tropical orchids and their microbiota and demonstrate the need for multidisciplinary studies for the implementation of integrated management strategies for Fusarium disease in commercial systems. Full article
(This article belongs to the Special Issue Biological Control as a Crucial Tool to Sustainable Food Production)
Show Figures

Figure 1

15 pages, 3370 KiB  
Article
Phylogenetic Constraints and Ecological Implications of Gut Bacterial Communities in Necrophagous Flies
by Woong-Bae Park, Jun-Kyu Park and Yuno Do
Diversity 2023, 15(9), 970; https://doi.org/10.3390/d15090970 - 28 Aug 2023
Viewed by 1559
Abstract
This study examines the gut bacterial communities of four necrophagous fly species: Lucilia illustris, L. caesar, Chrysomya megacephala, and C. pinguis. The gut bacterial communities exhibited significant variation across species, showcasing a diverse range of bacterial phyla, classes, and [...] Read more.
This study examines the gut bacterial communities of four necrophagous fly species: Lucilia illustris, L. caesar, Chrysomya megacephala, and C. pinguis. The gut bacterial communities exhibited significant variation across species, showcasing a diverse range of bacterial phyla, classes, and genera. Each species harbored a unique set of bacteria, yet there was considerable overlap in taxa among species. Species richness was comparable across all species. However, measures that account for both richness and evenness, such as the Shannon diversity index and the inverse Simpson’s diversity index, indicated significant differences between species, especially between L. illustris and C. pinguis. The functional profiles of the gut bacterial communities mainly centered on metabolic and environmental information processing functions, with no marked differences between species. While this study had limitations in data collection, it still revealed a significant correlation between the phylogenetic distances of some fly species and the distances of their gut bacterial communities. This supports the hypothesis that the gut microbiota is not random but is influenced by the host’s evolutionary history or seasons. We confirmed that an association between phylogeny and gut bacterial community structure, as determined through entanglement analysis, exists. The study focused on only five individuals from the four fly species sampled during spring and summer, which might affect the generalizability of the results. Future research would benefit from replicating this study with a larger sample size across various seasons to ensure the more widespread applicability of the findings. Full article
Show Figures

Figure 1

3 pages, 192 KiB  
Editorial
Editorial of Special Issues “Gut Microbiota–Host Interactions: From Symbiosis to Dysbiosis 2.0”
by Valentina Zuccaro, Francesca Romana Ponziani and Raffaele Bruno
Int. J. Mol. Sci. 2023, 24(10), 8977; https://doi.org/10.3390/ijms24108977 - 19 May 2023
Cited by 1 | Viewed by 1511
Abstract
The gastrointestinal (GI) tract is where external agents meet the internal environment [...] Full article
(This article belongs to the Special Issue Gut Microbiota–Host Interactions: From Symbiosis to Dysbiosis 2.0)
24 pages, 1919 KiB  
Review
On the Inheritance of Microbiome-Deficiency: Paediatric Functional Gastrointestinal Disorders, the Immune System and the Gut–Brain Axis
by David Smith, Sohan Jheeta, Georgina I. López-Cortés, Bernadette Street, Hannya V. Fuentes and Miryam Palacios-Pérez
Gastrointest. Disord. 2023, 5(2), 209-232; https://doi.org/10.3390/gidisord5020018 - 15 May 2023
Cited by 1 | Viewed by 3227
Abstract
Like the majority of non-communicable diseases that have recently gained attention, functional gastrointestinal (GI) disorders (FGID) in both children and adults are caused by a variety of medical conditions. In general, while it is often thought that common conditions such as obesity may [...] Read more.
Like the majority of non-communicable diseases that have recently gained attention, functional gastrointestinal (GI) disorders (FGID) in both children and adults are caused by a variety of medical conditions. In general, while it is often thought that common conditions such as obesity may cause other problems, for example, asthma or mental health issues, more consideration needs to be given to the possibility that they could both be brought on by a single underlying problem. Based on the variations in non-communicable disease, in recent years, our group has been revisiting the exact role of the intestinal microbiome within the Vertebrata. While the metabolic products of the microbiome have a role to play in the adult, our tentative conclusion is that the fully functioning, mutualistic microbiome has a primary role: to transfer antigen information from the mother to the neonate in order to calibrate its immune system, allowing it to survive within the microbial environment into which it will emerge. Granted that the microbiome possesses such a function, logic suggests the need for a robust, flexible, mechanism allowing for the partition of nutrition in the mature animal, thus ensuring the continued existence of both the vertebrate host and microbial guest, even under potentially unfavourable conditions. It is feasible that this partition process acts by altering the rate of peristalsis following communication through the gut–brain axis. The final step of this animal–microbiota symbiosis would then be when key microbes are transferred from the female to her progeny, either live offspring or eggs. According to this scheme, each animal inherits twice, once from its parents’ genetic material and once from the mother’s microbiome with the aid of the father’s seminal microbiome, which helps determine the expression of the parental genes. The key point is that the failure of this latter inheritance in humans leads to the distinctive manifestations of functional FGID disorders including inflammation and gut motility disturbances. Furthermore, it seems likely that the critical microbiome–gut association occurs in the first few hours of independent life, in a process that we term handshaking. Note that even if obvious disease in childhood is avoided, the underlying disorders may intrude later in youth or adulthood with immune system disruption coexisting with gut–brain axis issues such as excessive weight gain and poor mental health. In principle, investigating and perhaps supplementing the maternal microbiota provide clinicians with an unprecedented opportunity to intervene in long-term disease processes, even before the child is born. Full article
Show Figures

Graphical abstract

13 pages, 1050 KiB  
Review
Gut Immunobiosis and Biomodulators
by Vito Leonardo Miniello, Andrea Miniello, Laura Ficele, Aleksandra Skublewska-D’Elia, Vanessa Nadia Dargenio, Fernanda Cristofori and Ruggiero Francavilla
Nutrients 2023, 15(9), 2114; https://doi.org/10.3390/nu15092114 - 28 Apr 2023
Cited by 6 | Viewed by 3043
Abstract
The human gastrointestinal (GI) tract hosts complex and dynamic populations of microorganisms (gut microbiota) in advantageous symbiosis with the host organism through sophisticated molecular cross-talk. The balance and diversification within microbial communities (eubiosis) are crucial for the immune and metabolic homeostasis of the [...] Read more.
The human gastrointestinal (GI) tract hosts complex and dynamic populations of microorganisms (gut microbiota) in advantageous symbiosis with the host organism through sophisticated molecular cross-talk. The balance and diversification within microbial communities (eubiosis) are crucial for the immune and metabolic homeostasis of the host, as well as for inhibiting pathogen penetration. In contrast, compositional dysregulation of the microbiota (dysbiosis) is blamed for the determinism of numerous diseases. Although further advances in the so-called ‘omics’ disciplines are needed, dietary manipulation of the gut microbial ecosystem through biomodulators (prebiotics, probiotics, symbionts, and postbiotics) represents an intriguing target to stabilize and/or restore eubiosis. Recently, new approaches have been developed for the production of infant formulas supplemented with prebiotics (human milk oligosaccharides [HMOs], galacto-oligosaccharides [GOS], fructo-oligosaccharides [FOS]), probiotics, and postbiotics to obtain formulas that are nutritionally and biologically equivalent to human milk (closer to the reference). Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

14 pages, 1480 KiB  
Review
Programming Factors of Neonatal Intestinal Dysbiosis as a Cause of Disease
by Miljana Z. Jovandaric, Stefan Dugalic, Sandra Babic, Ivana R. Babovic, Srboljub Milicevic, Dejan Mihajlovic, Miljan Culjic, Tamara Zivanovic, Aleksandar Trklja, Bogdan Markovic, Vera Plesinac, Zorica Jestrovic, Biljana Medjo, Misela Raus and Miroslava Gojnic Dugalic
Int. J. Mol. Sci. 2023, 24(6), 5723; https://doi.org/10.3390/ijms24065723 - 17 Mar 2023
Cited by 9 | Viewed by 3286
Abstract
The intestinal microbiota consists of trillions of bacteria, viruses, and fungi that achieve a perfect symbiosis with the host. They perform immunological, metabolic, and endocrine functions in the body. The microbiota is formed intrauterine. Dysbiosis is a microbiome disorder characterized by an imbalance [...] Read more.
The intestinal microbiota consists of trillions of bacteria, viruses, and fungi that achieve a perfect symbiosis with the host. They perform immunological, metabolic, and endocrine functions in the body. The microbiota is formed intrauterine. Dysbiosis is a microbiome disorder characterized by an imbalance in the composition of the microbiota, as well as changes in their functional and metabolic activities. The causes of dysbiosis include improper nutrition in pregnant women, hormone therapy, the use of drugs, especially antibiotics, and a lack of exposure to the mother’s vaginal microbiota during natural birth. Changes in the intestinal microbiota are increasingly being identified in various diseases, starting in the early neonatal period into the adult period. Conclusions: In recent years, it has become more and more obvious that the components of the intestinal microbiota are crucial for the proper development of the immune system, and its disruption leads to disease. Full article
(This article belongs to the Special Issue Molecular Research of Gastrointestinal Disease)
Show Figures

Figure 1

23 pages, 2572 KiB  
Review
Legumes Regulate Symbiosis with Rhizobia via Their Innate Immune System
by Estelle B. Grundy, Peter M. Gresshoff, Huanan Su and Brett J. Ferguson
Int. J. Mol. Sci. 2023, 24(3), 2800; https://doi.org/10.3390/ijms24032800 - 1 Feb 2023
Cited by 15 | Viewed by 5580
Abstract
Plant roots are constantly exposed to a diverse microbiota of pathogens and mutualistic partners. The host’s immune system is an essential component for its survival, enabling it to monitor nearby microbes for potential threats and respond with a defence response when required. Current [...] Read more.
Plant roots are constantly exposed to a diverse microbiota of pathogens and mutualistic partners. The host’s immune system is an essential component for its survival, enabling it to monitor nearby microbes for potential threats and respond with a defence response when required. Current research suggests that the plant immune system has also been employed in the legume-rhizobia symbiosis as a means of monitoring different rhizobia strains and that successful rhizobia have evolved to overcome this system to infect the roots and initiate nodulation. With clear implications for host-specificity, the immune system has the potential to be an important target for engineering versatile crops for effective nodulation in the field. However, current knowledge of the interacting components governing this pathway is limited, and further research is required to build on what is currently known to improve our understanding. This review provides a general overview of the plant immune system’s role in nodulation. With a focus on the cycles of microbe-associated molecular pattern-triggered immunity (MTI) and effector-triggered immunity (ETI), we highlight key molecular players and recent findings while addressing the current knowledge gaps in this area. Full article
Show Figures

Figure 1

10 pages, 849 KiB  
Article
Fungal Host Affects Photosynthesis in a Lichen Holobiont
by Meike Schulz, Imke Schmitt, Daniel Weber and Francesco Dal Grande
J. Fungi 2022, 8(12), 1267; https://doi.org/10.3390/jof8121267 - 30 Nov 2022
Cited by 5 | Viewed by 2442
Abstract
Corals and lichens are iconic examples of photosynthetic holobionts, i.e., ecological and evolutionary units resulting from the tightly integrated association of algae and prokaryotic microbiota with animal or fungal hosts, respectively. While the role of the coral host in modulating photosynthesis has been [...] Read more.
Corals and lichens are iconic examples of photosynthetic holobionts, i.e., ecological and evolutionary units resulting from the tightly integrated association of algae and prokaryotic microbiota with animal or fungal hosts, respectively. While the role of the coral host in modulating photosynthesis has been clarified to a large extent in coral holobionts, the role of the fungal host in this regard is far less understood. Here, we address this question by taking advantage of the recent discovery of highly specific fungal–algal pairings corresponding to climatically adapted ecotypes of the lichen-forming genus Umbilicaria. Specifically, we compared chlorophyll a fluorescence kinetics among lichen thalli consisting of different fungal–algal combinations. We show that photosynthetic performance in these lichens is not only driven by algal genotype, but also by fungal host species identity and intra-host genotype. These findings shed new light on the closely intertwined physiological processes of fungal and algal partners in the lichen symbiosis. Indeed, the specific combinations of fungal and algal genotypes within a lichen individual—and the resulting combined functional phenotype—can be regarded as a response to the environment. Our findings suggest that characterizing the genetic composition of both eukaryotic partners is an important complimentary step to understand and predict the lichen holobiont’s responses to environmental change. Full article
(This article belongs to the Special Issue Ecology and Evolution of Lichens and Associated Microorganisms)
Show Figures

Figure 1

Back to TopTop