Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = horizontal settler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8084 KiB  
Article
Experimental Observations of Heat-Assisted Boycott Effect in Trapezoidal Enclosures
by Fernando Apaz and Christian F. Ihle
Appl. Sci. 2025, 15(1), 97; https://doi.org/10.3390/app15010097 - 26 Dec 2024
Viewed by 881
Abstract
The present study examined the influence of controlled heat injection on the sedimentation of fine particles in a trapezoidal container, aiming to explore the combined effects of the Boycott effect and convection induced by heating. The experimental design incorporates varying initial particle concentrations [...] Read more.
The present study examined the influence of controlled heat injection on the sedimentation of fine particles in a trapezoidal container, aiming to explore the combined effects of the Boycott effect and convection induced by heating. The experimental design incorporates varying initial particle concentrations (1500 ppm and 3000 ppm) and heat injection levels (0 W, 4.5 W, and 9 W imposed power) to analyze sedimentation dynamics, focusing on concentration distribution patterns and clear water production. The findings reveal complex interactions between heat injection and particle concentration. At 1500 ppm, heat injection shows minimal impact on sedimentation due to particle resuspension. However, at 3000 ppm, particularly with a 9 W heat injection, the sedimentation performance improves significantly during the early stages of the process, achieving an average sedimentation rate approximately 40 % higher than without heat injection and an average clear water generation rate nearly four times greater. These clear water generation rates were determined considering water with particle concentrations below 20 % of the initial concentration (300 ppm for 1500 ppm and 600 ppm for 3000 ppm). A further analysis of the column and row data reveals stratification patterns influenced by heat injection, characterized by distinct horizontal and vertical layers. Additionally, the results suggest that wall temperature distributions are largely unaffected by the initial particle concentration, while clear water production and sedimentation efficiency are highly dependent on heat levels and initial particle density. These results highlight the potential of heat-enhanced sedimentation to improve separation processes in industrial systems. Specifically, they provide valuable insights for optimizing the design and efficiency of lamella settlers, commonly used in water treatment and other particulate separation applications. Future studies will explore the combined use of coagulants and flocculants and the application of these findings to real mixtures, such as mine water or wastewater, to further validate and expand their industrial applicability. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

29 pages, 4049 KiB  
Article
Theoretical and Experimental Studies of Uneven Dust Suction from a Multi-Cyclone Settling Tank in a Two-Stage Air Filter
by Tadeusz Dziubak
Energies 2021, 14(24), 8396; https://doi.org/10.3390/en14248396 - 13 Dec 2021
Cited by 18 | Viewed by 3353
Abstract
In this paper, the uneven air stream distribution problem of individual cyclones is studied in the multi-cyclones of intake air filters in special vehicles’ engines. This problem increases in multi-cyclones, in which several dozen cyclones have a common dust trap from which the [...] Read more.
In this paper, the uneven air stream distribution problem of individual cyclones is studied in the multi-cyclones of intake air filters in special vehicles’ engines. This problem increases in multi-cyclones, in which several dozen cyclones have a common dust trap from which the collected dust is continuously removed by ejection suction. The aim of this study is the recognition of the theoretical and experimental possibility of reducing the streams’ unevenness, which should result in an efficiency increase in multi-cyclone separation. The methods that led to obtaining a relative stream uniformity from the suction of individual cyclones was analyzed. The method for creating equal pressure drops between the suction streams in the channels was used to achieve this goal. For this purpose, the internal structure of the multi-cyclone settler was changed. The multi-cyclone settling tank space was divided by vertical partitions into independent segments. The settling tank segment was then divided with horizontal shelves into suction channels of different heights, which were assigned a specific number of individual cyclones. The suction channels’ height was theoretically selected in terms of the equal resistance to air stream flow through the channels. For this purpose, the multi-cyclone dust settler segment model was developed. The theoretically determined suction channel’s height was verified by performing experimental flow tests in four (A, B, C, D) dust settler variants. Suction streams of satisfactory uniformity from the cyclones of the variant D settling tank were obtained at a level of 5%. In the next stage, experimental tests of the segment cyclones were carried out with dust before and after the division into suction channels of variant D for the settling tank. A significant increase was achieved from 93.73% to 96.08% in the cyclones’ separation efficiency, which were located as far away from the suction stub as possible and led to a reduction in the non-uniformity of cyclone efficiency in the segment. It follows that the multi-cyclone dust settling segment’s internal structure change gave the expected results. Full article
(This article belongs to the Special Issue Internal Combustion Engine Performance)
Show Figures

Figure 1

19 pages, 7487 KiB  
Article
Integration of Aqueous Two-Phase Extraction as Cell Harvest and Capture Operation in the Manufacturing Process of Monoclonal Antibodies
by Axel Schmidt, Michael Richter, Frederik Rudolph and Jochen Strube
Antibodies 2017, 6(4), 21; https://doi.org/10.3390/antib6040021 - 1 Dec 2017
Cited by 27 | Viewed by 9923
Abstract
Substantial improvements have been made to cell culturing processes (e.g., higher product titer) in recent years by raising cell densities and optimizing cultivation time. However, this has been accompanied by an increase in product-related impurities and therefore greater challenges in subsequent clarification and [...] Read more.
Substantial improvements have been made to cell culturing processes (e.g., higher product titer) in recent years by raising cell densities and optimizing cultivation time. However, this has been accompanied by an increase in product-related impurities and therefore greater challenges in subsequent clarification and capture operations. Considering the paradigm shift towards the design of continuously operating dedicated plants at smaller scales—with or without disposable technology—for treating smaller patient populations due to new indications or personalized medicine approaches, the rising need for new, innovative strategies for both clarification and capture technology becomes evident. Aqueous two-phase extraction (ATPE) is now considered to be a feasible unit operation, e.g., for the capture of monoclonal antibodies or recombinant proteins. However, most of the published work so far investigates the applicability of ATPE in antibody-manufacturing processes at the lab-scale and for the most part, only during the capture step. This work shows the integration of ATPE as a combined harvest and capture step into a downstream process. Additionally, a model is applied that allows early prediction of settler dimensions with high prediction accuracy. Finally, a reliable process development concept, which guides through the necessary steps, starting from the definition of the separation task to the final stages of integration and scale-up, is presented. Full article
(This article belongs to the Special Issue Monoclonal Antibodies)
Show Figures

Figure 1

Back to TopTop