Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hoop rupture strain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3843 KiB  
Article
An Artificial Network-Based Prediction of Key Reference Zones on Axial Stress–Strain Curves of FRP-Confined Concrete
by Ali Fallah Pour and Aliakbar Gholampour
Appl. Sci. 2023, 13(5), 3038; https://doi.org/10.3390/app13053038 - 27 Feb 2023
Cited by 2 | Viewed by 1874
Abstract
The accurate prediction of reference points on the axial stress–axial strain relationship of fiber-reinforced polymer (FRP)-confined concrete is vital to pre-design structures made with this system. This study uses an artificial neural network (ANN) for predicting hoop rupture strain (εh,rup) [...] Read more.
The accurate prediction of reference points on the axial stress–axial strain relationship of fiber-reinforced polymer (FRP)-confined concrete is vital to pre-design structures made with this system. This study uses an artificial neural network (ANN) for predicting hoop rupture strain (εh,rup) and transition zone, namely transition strain (εc1) and stress (f’c1), on axial stress–strain curves of FRP-confined concrete. These are key parameters for estimating a transition zone of stress–strain curves. In this study, accompanied with these parameters, ultimate condition parameters, including compressive strength and ultimate axial strain, were predicted using a comprehensive database. Various combinations of input data and ANN parameters were used to increase the accuracy of the predictions. A sensitivity analysis and a model validation assessment were performed to evaluate the predictability of the developed models. At the end, a comparison between the proposed models in this study and existing ANN and design-oriented models was presented. It is shown that the accuracy of the developed ANN models in this study is higher or comparable to that of existing ANN models. Additionally, the developed models in this study to predict f’c1 and εc1 exhibit a higher accuracy compared to existing design-oriented models. These results indicate that the proposed ANN models capture the lateral confinement effect on ultimate and transition zones of FRP-confined concrete with a more robust performance compared to existing models. Full article
Show Figures

Figure 1

18 pages, 36584 KiB  
Article
Effect of Aggregate Size on the Axial Compressive Behavior of FRP-Confined Coral Aggregate Concrete
by Pengda Li, Deqing Huang, Ruiyu Li, Rongkang Li and Fang Yuan
Polymers 2022, 14(18), 3877; https://doi.org/10.3390/polym14183877 - 16 Sep 2022
Cited by 12 | Viewed by 1925
Abstract
Using locally available raw materials for preparing concrete, such as coral reefs, seawater, and sea sand, is conducive to compensating for the shortage of construction materials used on remote islands. Jacketing fiber-reinforced polymer (FRP), as passive confinement, is a practical approach to enhance [...] Read more.
Using locally available raw materials for preparing concrete, such as coral reefs, seawater, and sea sand, is conducive to compensating for the shortage of construction materials used on remote islands. Jacketing fiber-reinforced polymer (FRP), as passive confinement, is a practical approach to enhance the strength, ductility, and durability of such coral aggregate concrete (CAC). Rational and economical CAC structural design requires understanding the interactions between the CAC fracture process and FRP confinement. The coral aggregate size is the critical parameter of their interaction since it affects the crack propagation of CAC and FRP confinement efficiency. This study conducted axial compression tests on FRP-confined CAC cylinders with varying coral aggregate sizes and FRP confinement levels. The test results indicate that the coral aggregate sizes affected the unconfined CAC strength. In addition, the dilation behavior of FRP-confined CAC varied with aggregate sizes, showing that CAC with smaller coral aggregate featured a more uniform hoop strain distribution and larger FRP rupture strain. These coupling effects are epitomized by the variation in the transition stress on the stress–strain curve, which makes the existing stress–strain models not applicable for FRP-confined CAC. A modified stress–strain model is subsequently proposed. Finally, the practical and environmental implications of the present study are discussed. Full article
(This article belongs to the Special Issue Mechanical Properties of Fiber Reinforced Polymer Composites)
Show Figures

Figure 1

19 pages, 2940 KiB  
Article
Influences of Slenderness and Eccentricity on the Mechanical Properties of Concrete-Filled GFRP Tube Columns
by Hongbo Guan, Yifei Xia, Jinli Wang and Arsene Hugo Mbonyintege
Polymers 2021, 13(17), 2968; https://doi.org/10.3390/polym13172968 - 31 Aug 2021
Cited by 4 | Viewed by 3373
Abstract
The existence of either eccentricity or slenderness has a significant effect on the mechanical properties of a structure or member. These properties can change the working mechanism, failure mode, and bearing capacity of the structure or member. A concrete-filled, glass fibre-reinforced, polymer tube [...] Read more.
The existence of either eccentricity or slenderness has a significant effect on the mechanical properties of a structure or member. These properties can change the working mechanism, failure mode, and bearing capacity of the structure or member. A concrete-filled, glass fibre-reinforced, polymer tube composite column has the same problem. We carried out experiments on the influences of eccentricity and slenderness on the mechanical properties of concrete-filled, glass fibre-reinforced, polymer tube composite columns. The experimentally recorded stress–strain relationships are presented graphically, and the ultimate axial stresses and strains and the FRP tube hoop strains at rupture were tabulated. The results indicate that the influences of slenderness and eccentricity on the composite columns were significant with regard to the axial strain, hoop strain, ultimate bearing capacity, lateral displacement, and failure mode. Based on the existing research literature and the results reported in this paper, the bearing capacity formula of a composite slender column under an eccentric load was established. The theoretical results were in good agreement with the experimental results. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymers (FRPs))
Show Figures

Figure 1

32 pages, 4632 KiB  
Article
Axial Compressive Strength Models of Eccentrically-Loaded Rectangular Reinforced Concrete Columns Confined with FRP
by Haytham F. Isleem, Muhammad Abid, Wesam Salah Alaloul, Muhammad Kamal Shah, Shayan Zeb, Muhammad Ali Musarat, Muhammad Faisal Javed, Fahid Aslam and Hisham Alabduljabbar
Materials 2021, 14(13), 3498; https://doi.org/10.3390/ma14133498 - 23 Jun 2021
Cited by 21 | Viewed by 3778
Abstract
The majority of experimental and analytical studies on fiber-reinforced polymer (FRP) confined concrete has largely concentrated on plain (unreinforced) small-scale concrete columns, on which the efficiency of strengthening is much higher compared with large-scale columns. Although reinforced concrete (RC) columns subjected to combined [...] Read more.
The majority of experimental and analytical studies on fiber-reinforced polymer (FRP) confined concrete has largely concentrated on plain (unreinforced) small-scale concrete columns, on which the efficiency of strengthening is much higher compared with large-scale columns. Although reinforced concrete (RC) columns subjected to combined axial compression and flexural loads (i.e., eccentric compression) are the most common structural elements used in practice, research on eccentrically-loaded FRP-confined rectangular RC columns has been much more limited. More specifically, the limited research has generally been concerned with small-scale RC columns, and hence, the proposed eccentric-loading stress-strain models were mainly based on the existing concentric-loading models of FRP-confined concrete columns of small scale. In the light of such demand to date, this paper is aimed at developing a mathematical model to better predict the strength of FRP-confined rectangular RC columns. The strain distribution of FRP around the circumference of the rectangular sections was investigated to propose equations for the actual rupture strain of FRP wrapped in the horizontal and vertical directions. The model was accomplished using 230 results of 155 tested specimens compiled from 19 studies available in the technical literature. The test database covers an unconfined concrete strength ranging between 9.9 and 73.1 MPa, and section’s dimension ranging from 100–300 mm and 125–435 mm for the short and long sides, respectively. Other test parameters, such as aspect ratio, corner radius, internal hoop steel reinforcement, FRP wrapping layout, and number of FRP wraps were all considered in the model. The performance of the model shows a very good correlation with the test results. Full article
Show Figures

Figure 1

Back to TopTop