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Abstract: The accurate prediction of reference points on the axial stress–axial strain relationship of
fiber-reinforced polymer (FRP)-confined concrete is vital to pre-design structures made with this
system. This study uses an artificial neural network (ANN) for predicting hoop rupture strain (εh,rup)
and transition zone, namely transition strain (εc1) and stress (f’c1), on axial stress–strain curves of
FRP-confined concrete. These are key parameters for estimating a transition zone of stress–strain
curves. In this study, accompanied with these parameters, ultimate condition parameters, including
compressive strength and ultimate axial strain, were predicted using a comprehensive database.
Various combinations of input data and ANN parameters were used to increase the accuracy of the
predictions. A sensitivity analysis and a model validation assessment were performed to evaluate
the predictability of the developed models. At the end, a comparison between the proposed models
in this study and existing ANN and design-oriented models was presented. It is shown that the
accuracy of the developed ANN models in this study is higher or comparable to that of existing
ANN models. Additionally, the developed models in this study to predict f’c1 and εc1 exhibit a higher
accuracy compared to existing design-oriented models. These results indicate that the proposed
ANN models capture the lateral confinement effect on ultimate and transition zones of FRP-confined
concrete with a more robust performance compared to existing models.

Keywords: FRP-confined concrete; hoop rupture strain; artificial neural network (ANN); ultimate
axial strain; transition zone; compressive strength

1. Introduction

Fiber-reinforced polymer (FRP) as a confinement material for concrete columns has
been investigated by numerous studies for last four decades [1]. Mechanical characteristics
of FRP-confined concrete with compressive loading was investigated in-depth, and various
models were developed to predict the characteristics of concrete columns confined with FRP
tubes. However, the prediction of some reference parameters on stress–strain relationships
of this high-performance structural system, such as hoop rupture strain and axial strain at
ultimate, still needs a closer examination [2–4]. Additionally, the transition point as another
influential zone on the stress–strain curve has not been examined closely, although few
studies developed models to predict this key reference point [5–8]. The transition point
is an area where the first ascending nonlinear segment of the stress–strain curve links to
the second quasi-linear segment [9]. The stress–strain curves after their transition point
show different behaviors: ascending or descending trend [3]. As explained by Fallah Pour
et al. [4], through accurate estimation of the ultimate and transition zone of FRP-confined
concretes, their whole axial stress–strain curve is predicted accurately. In this study, the
main area of focus is the curves, which show ascending or descending behavior after the
transition zone.

Various approaches, such as analysis-oriented and design-oriented, have been utilized
for predicting the characteristics of concretes confined with FRP. Analysis-oriented models
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have been versatile models due to their ability in predicting the whole stress–strain curve.
However, these models depend significantly on the concrete dilation behavior. Existing
predictions for this behavior were either inaccurate or time-consuming due to the need
for great computational effort [10–13]. Assessment of existing design-oriented expressions
expanded by different studies showed that they could approximately provide accurate pre-
dictions for compressive strength (f’cc) and axial transition stress (f’c1) [4,9]. However, they
could not accurately estimate the strain corresponding to f’cc (εcu) [4,9]. Furthermore, the
existing expressions for εcu prediction used experimental hoop rupture strain (εh,rup). How-
ever, εh,rup does not readily exist in designing procedures. Additionally, Bisby et al. [14,15]
discussed that the reported experimental εh,rup had an inconsistency. In addition, some of
the experimental data could not follow the trend of εh,rup. They discussed that this is partly
due to location of shear planes and using strain gauges as a measurement method [3,14,15].
Similar to εcu and εh,rup, accurate estimation of axial strain at the transition zone (εc1), as
another key reference strain, was not possible using existing proposed design-oriented
expressions [4]. These observations in the performed literature review indicate that more
investigation is essential on the prediction of significant reference strains, namely εcu, εh,rup,
and εc1.

Data-driven-based methods recently have received a great deal of attention due to their
simplicity in use and usually offering a closed-form model for predictions. These models
include various types of evaluation algorithms, including artificial neural network (ANN),
generic programming (GP), stepwise regression, and fuzzy logic algorithms [16]. Ghaboussi
et al. [17] used a neural network as both a knowledge-based and a data-driven technique
to predict the characteristics of different materials. Their prediction was developed directly
from experimental datasets by ignoring prior assumption and human observations. They
discussed that in the analysis of neural network models, the characteristics of materials can
be implicitly captured using parameters of weight [17]. Khan et al. [18] developed hybrid
ANN models for durability analysis of glass-FRP rebars in an alkaline concrete environment.
Zheng et al. [19] predicted the compressive strength of concrete using an ANN mesoscale
concretization model. They found that their model could accurately capture the mechanical
response of the concrete. Huang et al. [20] developed a back-propagation ANN model to
capture the interface bond behavior of FRP-reinforced concrete. Different meta-heuristic
algorithms (e.g., particle swarm optimization, social spider optimization) were used by
Sarkhani Benemaran et al. [21] to improve the prediction accuracy of a gradient boosting-
based method for estimating the resilient modulus of flexible pavement foundations.
Finally, Yildizel and Toktas [22] used an artificial bee colony algorithm to design multilayer
microwave absorbing foam concrete.

In the case of FRP-confined concrete, Ozbakkaloglu et al. [1] and Jiang et al. [16]
reported that numerous predictions were developed using data-driven approaches to
estimate the ultimate condition of the confined concrete having a circular-shape cross-
section. Ozbakkaloglu et al. [1] reported the existence of more than 88 expressions to
predict εcu and f’cc of confined concretes with FRP. Different studies used ANN and GP to
estimate εcu and f’cc (e.g., [16,23–27]). It was reported that an ANN was able to predict f’cc
more accurately compared to traditional approaches [16]. Wu et al. [28] used the other type
of neural network, i.e., radial basis function network, to predict f’cc. Cascardi et al. [29]
determined f’cc by predicting the efficiency of a FRP jacket using an ANN technique.
Recently, Isleem et al. [30] used ANN to build a confinement model to predict the ultimate
condition of FRP-confined concrete. However, their model was limited to the test results
obtained in their study. Jiang et al. [16] predicted εcu in addition to f’cc using an ANN
accompanied with the prediction of the stress–strain relationship. Similar to the concretes
with a circular cross-section, the ultimate condition of the concretes with square and
rectangular cross-sections were also examined by ANN analysis in different studies [31–33].
Nonetheless, the literature review revealed that no research has examined the prediction
of a transition zone using an ANN. Existing models were either complex, dealt with a
small number of databases, or ignored key influential input parameters on the behavior of
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FRP-confined concrete. The availability of the five key reference parameters (i.e., εcu, f’cc,
εc1, f’c1, and εh,rup) helps to model the whole curve of the FRP-confined concrete accurately,
as was explained by Fallah Pour et al. [4]. An ANN can handle a complex database with
large variables, identify sensitivity of input and output parameters, and establish relations
between the input and output variables.

This study, as the first study in the literature, used an ANN technique to predict the
transition zone on the stress–strain relationship and hoop rupture strain of FRP-confined
concrete. The accuracy of the ultimate point prediction on the curve was also examined.
A comprehensive database collected by this research group was used. Firstly, a brief
introduction of the database and the principals of an ANN were provided. Afterward,
the influence of an input variable in an ANN to predict different critical points on the
curves was examined. A sensitivity analysis was performed for examining the influence of
input variables on the accuracy of the final selected ANN option. This was accompanied
by model validation using different statistical indicators. At the end, the accuracy of the
developed models by ANN was compared to that of existing models.

2. Experimental Test Database

The primary database used for this study for the ultimate condition can be found
in [9,34], and the transition zone datasets can be found in [4] as the authors’ previous
studies. It should be noted that details of applied criteria to have a reliable and consistent
primary database, leading to elimination of outlier datasets, can be found in [4]. The
total data number for each key points is presented in Table 1. Figure 1 demonstrates the
distribution of data.

Table 1. Summary of test results in the database.

Key Point Number of Total Data Number of Data after Evaluation

f’cc 1063 836
εcu 1063 571

εh,rup 506 * 443
f’c1 260 260
εc1 260 230

* Only experimental εh,rup was considered in the calculation.
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3. Brief Overview of an Artificial Neural Network (ANN)

An artificial neural network (ANN) is a powerful instrument in regression analysis
and classification of data [35]. A multilayer feed forward perceptron neural network based
on an error back-propagation was used in this study. Based on Figure 2, ANN includes
at least three layers. With more than three layers, they can be divided to three types of
layers. These layers type include input, output, and hidden layer. In this method, the input
vector is weighted (wi), and a bias (b) is added to this value for each neuron, as shown in
Equation (1).

yi =
m

∑
j=1

wijxj + bi, (1)

where x1, x2, . . . , xm are input vectors, wi1, wi2, . . . , wim are the weight of neuron I, and bi
is bias.
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For describing a nonlinear relationship of input and output data, a nonlinear process
on yi is needed. This nonlinear process is called transfer (activation) function and is shown
in Equation (2).

zi = ϕ(yi), (2)

The selection of an appropriate transfer function for training the network is one of
the influential parameters on the training procedure [36]. In this study, different transfer
functions were used to achieve a highly accurate prediction model. The used transfer
functions were Elliot sigmoid, logarithmic sigmoid, and linear and symmetric sigmoid
transfer function.

Feed forward networks have an adaptive learning ability because of the adjustability
of the neuron’s connection weights. The adjustment of the weight is known as knowledge
storing. This indicates the need for comprehensive training to obtain an appropriate
connection weight [37]. It should be noted that the applied algorithm in this study was a
supervised algorithm, which needs both input–output pairs to perform network training.
Equations (3) and (4) summarize the training procedure of networks:

gt = ∇ f (t), (3)

wj+1 = wj − agt, (4)

where w is the vector of weight, f is the objective function, g is the error gradient, and a is
the learning rate. The iteration loop with all training datasets is referred to as an epoch, and
training procedures sometimes need a couple of epochs to respect the considered criteria
for stopping the iteration [38].



Appl. Sci. 2023, 13, 3038 6 of 25

4. Optimal ANN Selection
4.1. Configuration of a Neural Network

It is well established that an increase in hidden layers and neuron numbers causes
an increasing predictability of models. However, there is not an explicit design formula
yet to determine the number of layers or neurons in an ANN analysis [16]. Additionally,
using very complicated and strong modeling capability in an ANN architecture and small
datasets leads to overfitting [39]. Although few hyper-parameter optimization algorithms,
such as random research, existed [40], an experimental model tuning method was used
in this study to find out the ANN architecture parameters, such as number of hidden
layers and neurons. It should be mentioned that the experimental tuning was used for
all investigated output parameters in this study. This indicates the existence of different
architectural ANN maps for the investigated parameters.

4.2. Training of Network

MATLAB software was utilized to perform the ANN analysis. All combinations
of input variables were trained utilizing Levenberg–Marquardt, Bayesian regularization,
and scaled conjugate gradient algorithms [41]. Mean average error (MAE) was selected
as the objective function. The dataset allocation, namely training and test, was similar
for all analysis where the training datasets consisted of 70% of the total database, 15%
as validation, and 15% as test datasets. The division was made by random selection for
all three sets of divisions. In this study, the learning rate (LR) was determined by an
experimental study, and it was decided to be 0.001 in the case of Levenberg–Marquardt and
0.005 for Bayesian regularization and scaled conjugate gradient algorithm. Additionally, the
performance goal was set equal to 1 × 10−10, and infinitive time was fixed for maximum
time for the training procedure. At the end, min-max normalization methods were used for
all the ANN analyses.

4.3. ANN Network

Initially, the best composition of input variables was selected. To choose the most
accurate input combination, all combinations were evaluated using one hidden layer with
various numbers of neurons ranging 10 to 30. This indicates the existence of three layers,
namely input, hidden, and output. All parameters, e.g., goal performance, learning rate,
and data division, were evaluated experimentally. Then, they were kept constant in this
step of the study. The results indicated that the best LR was 0.005 for all the training
functions. At this step, the symmetrical transfer function (tansig) was picked up for all
analyses, but all three training functions of Levenberg–Marquardt, Bayesian regularization,
and scaled conjugate gradient were analyzed. By determination of the best combination
of input variables in the first step of the study, other parameters in the ANN architecture,
including hidden layers and neuron numbers, transfer function variation, and learning
rate, were investigated again. It should be noted that multiple transfer functions were
examined, including logarithmic sigmoid transfer function (logsig), symmetric sigmoid
transfer function (tansig), and linear transfer function (purelin).

4.4. Predictability Analysis

To evaluate the performance of the analysis in this study, different statistical indica-
tors were considered. These indicators were MAE (AE = 1

n ∑n
i=1|Modi − Expi|), average

absolute error (AAE =
∑N

i=1

∣∣∣Modi−Expi
Expi

∣∣∣
N ), mean (M =

∑N
i=1

Modi
Expi

N ), and root mean square error

(RSME =

√
∑N

i=1(Modi−Expi)
2

N or MSE = ∑N
i=1(Modi−Expi)

2

N ), where Modi and Expi are pre-
dicted and experimental values, respectively. MAE and AAE exhibit the accuracy of the
model overall, M determines if the model exhibits overestimation or underestimation, and
RMSE is an indicator of high errors.
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5. ANN-Based Prediction Models

Figure 3 presents the flow chart of this study to predict the properties of FRP-confined
concrete.
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5.1. Ultimate Condition

Ultimate point is a significant point of the axial stress–strain relationship and exhibits
εcu, f’cc, and εh,rup. Determination of this point offers a potential instrument to designers
for predicting the maximum resistance of the system [42]. It should be noted that the
corresponding strain to unconfined concrete strength (f’co), i.e., εco, has been considered
as an input variable and was calculated by the proposed expression by Ref. [10] (i.e.,

εco =
f ′0.225

c0
1000

(
152
D

)0.1( 2 D
H

)0.13
, where D and H are diameter and height of the specimen).

This lowered the dependency of the input variables to experimental values and made the
input variables readily available. This was the main purpose of this study to develop an
accurate model, which uses readily available input data with simplicity to apply.

5.1.1. f’cc

To obtain the best combination of input variables, different variable sets were used to
predict f’cc. This was accompanied with the investigation of the correlation between input
variables to avoid multicollinearity.

Table 2 shows the obtained Pearson’s correlation coefficients for all input variables
and output data for ultimate condition. Based on the table, the highest correlation was for
f’co and εco. As εco is a function of f’co, only f’co was used to predict f’cc in this study.

Table 2. Pearson’s correlation between input variables for ultimate condition.

Ef tf D ff εco f’co Kl Kl/f’co εfu

f’cc

Ef 1.0
tf −0.486 1.0
D −0.081 0.266 1.0
ff 0.780 −0.619 −0.122 1.0

εco 0.082 0.045 −0.213 0.010 1.0
f’co 0.081 0.045 −0.202 0.016 0.995 1.0
Kl 0.276 0.230 −0.123 0.082 0.388 0.398 1.0

Kl/f’co 0.265 0.221 0.002 0.110 −0.207 −0.194 0.747 1.0
εfu −0.531 0.010 −0.031 −0.106 −0.130 −0.124 −0.357 −0.303 1.0

εcu

Ef 1.0
tf −0.431 1.0
D −0.137 0.368 1.0
ff 0.709 −0.594 −0.238 1.0

εco 0.153 −0.085 −0.428 0.163 1.0
f’co 0.122 −0.007 −0.228 0.092 0.945 1.0
Kl 0.342 0.169 −0.134 0.175 0.378 0.365 1.0

Kl/f’co 0.319 0.208 0.026 0.148 −0.143 −0.158 0.781 1.0
εfu −0.613 0.032 −0.027 −0.170 −0.132 −0.153 −0.364 −0.324 1.0

εh,rup

Ef 1.0
tf −0.418 1.0
D −0.010 0.103 1.0
ff 0.655 −0.594 −0.135 1.0

εco 0.041 0.007 −0.361 0.053 1.0
f’co 0.023 0.055 −0.160 0.001 0.965 1.0
Kl 0.344 0.165 −0.167 0.129 0.338 0.324 1.0

Kl/f’co 0.342 0.161 −0.089 0.151 −0.206 −0.224 0.772 1.0
εfu −0.650 0.049 −0.084 −0.177 −0.046 −0.053 −0.375 −0.345 1.0
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Table 3 shows the change in ANN performance of f’cc for various sets of input variables.
As shown, the Levenberg–Marquardt and Bayesian regularization algorithms showed the
lowest AAE compared to the scaled conjugate gradient. Moreover, the hidden layer with
25 or 30 neurons generally developed the lowest AAE value, although some exceptions
can be observed, especially for the Levenberg–Marquardt algorithm. It is also observed
that the Bayesian regularization algorithm had the lowest AAE and RMSE among all the
studied cases, and the accuracy of the prediction by this algorithm increased by increasing
the input variables number. Additionally, a third set of input variables offered lower values
of AAE compared to other analyzed sets. As a result, the third set of variables was selected
as best combination of variables.

Table 3. Summary of different studied cases for input variables for f’cc.

Levenberg–Marquardt

10 Neurons 15 Neurons 20 Neurons 25 Neurons 30 Neurons

Input
Variables

AAE
(%)

M
(%)

RMSE
(MPa)

AAE
(%)

M
(%)

RMSE
(MPa)

AAE
(%)

M
(%)

RMSE
(MPa)

AAE
(%)

M
(%)

RMSE
(MPa)

AAE
(%)

M
(%)

RMSE
(MPa)

f’co, Kl, εfu 11.7 102.0 12.9 10.6 100.0 11.6 10.3 101.1 11.3 10.0 101.1 12.8 9.8 101.7 15.9

f’co, Kl, εfu,
Kl/f’co

10.8 101.7 11.3 10.6 101.4 11.3 12.0 104.7 12.3 10.7 101.1 11.9 10.1 101.4 10.6

f’co, Kl, εfu,
Kl/f’co, Ef,

ff, tf

12.6 103.2 12.4 16.1 105.6 16.0 10.7 97.5 11.3 9.1 100.8 8.8 10.8 100.8 9.9

f’co, Kl, εfu,
Kl/f’co, Ef,

ff, tf, D
13.5 106.2 12.6 10.8 103.0 11.2 9.0 101.0 10.5 9.9 102.7 10.2 8.7 100.7 9.3

Bayesian Regularization

10 Neurons 15 Neurons 20 Neurons 25 Neurons 30 Neurons

Input
Variables

AAE
(%)

M
(%)

RMSE
(MPa)

AAE
(%)

M
(%)

RMSE
(MPa)

AAE
(%)

M
(%)

RMSE
(MPa)

AAE
(%)

M
(%)

RMSE
(MPa)

AAE
(%)

M
(%)

RMSE
(MPa)

f’co, Kl, εfu 10.7 102.0 11.2 10.0 101.1 11.5 9.5 101.3 10.2 9.2 102.2 11.3 8.7 101.5 9.9

f’co, Kl, εfu,
Kl/f’co

10.5 101.8 10.8 10.7 101.8 12.6 10.5 101.8 11.0 9.8 101.7 11.0 10.4 102.1 11.4

f’co, Kl, εfu,
Kl/f’co, Ef,

ff, tf

7.7 100.7 9.7 7.7 101.0 8.4 6.6 100.6 7.0 6.6 100.3 6.3 6.5 100.3 7.8

f’co, Kl, εfu,
Kl/f’co, Ef,

ff, tf, D
8.4 101.1 9.2 7.7 101.0 8.4 6.7 101.0 7.2 7.4 101.3 10.1 7.2 99.6 9.7

Scaled conjugate gradient

10 Neurons 15 Neurons 20 Neurons 25 Neurons 30 Neurons

Input
Variables

AAE
(%)

M
(%)

RMSE
(MPa)

AAE
(%)

M
(%)

RMSE
(MPa)

AAE
(%)

M
(%)

RMSE
(MPa)

AAE
(%)

M
(%)

RMSE
(MPa)

AAE
(%)

M
(%)

RMSE
(MPa)

f’co, Kl, εfu 14.4 104.0 14.7 15.1 104.2 15.1 13.7 103.5 13.8 14.8 103.5 15.1 17.2 104.2 18.2

f’co, Kl, εfu,
Kl/f’co

15.1 105.0 14.8 10.8 102.4 11.6 18.6 105.6 18.2 15.7 103.1 17.5 19.2 104.4 20.4

f’co, Kl, εfu,
Kl/f’co, Ef,

ff, tf

14.8 101.7 15.6 15.9 105.3 15.8 14.2 103.2 14.4 13.6 102.8 14.9 14.9 102.4 16.3

f’co, Kl, εfu,
Kl/f’co, Ef,

ff, tf, D
13.7 102.7 14.1 11.2 102.2 12.0 16.3 104.7 16.9 17.6 103.4 17.2 21.6 103.5 21.3

It should be noted that Kl/f’co, as normalized lateral stiffness, was also considered as
an input variable, although f’co and Kl (lateral stiffness) existed in the input variables set.
As can be seen in Table 2, the correlation coefficient for Kl and Kl/f’co was 0.747. Kl/f’co was



Appl. Sci. 2023, 13, 3038 10 of 25

added to the variable set as an independent variable due to its significance in the mechanical
characteristic of FRP-confined concrete. Equation (5) presents the best composition of input
variables to obtain the highest accuracy for prediction of f’cc.

f ′cc = f
(

f ′co, Kl ,
Kl
f ′co

, ε f u, E f , t f , f f

)
, (5)

where tf is the FRP total thickness, εfu is the fiber ultimate tensile strain, Ef is FRP elastic
modulus, and ff is fiber ultimate tensile strength.

As a second step, the influence of adding a second hidden layer and a number of
neurons at each layer was investigated. It should be noted that using a higher number of
hidden layers could increase the accuracy, but this would lead to more complicated models.
Therefore, the hidden layers number was limited to two, and the variation of a neuron
number in hidden layers was studied. Table 4 displays the influence of adding a second
hidden layer to an ANN on f’cc prediction. It should be noted that all the analyzed cases
were not presented in this table due to the similarity of results. Furthermore, a scaled conju-
gate gradient algorithm was not studied in this step due its lower accuracy compared to the
other algorithms. According to Table 4, two hidden layers with 15 neurons in first hidden
layer and 10 neurons in second hidden layer using the Bayesian regularization algorithm
developed the most accurate prediction for f’cc. Comparing the most accurate model with
one hidden layer (presented in Table 3) to that with two hidden layers (presented in Table 4)
revealed that a more accurate prediction was obtained by two hidden layers; however, the
accuracy improvement was not notably significant.

Table 4. Summary of different studied cases for different layers in predicting f’cc.

Levenberg–Marquardt Bayesian Regularization

AAE (%) M (%) RMSE
(MPa) AAE (%) M (%) RMSE

(MPa)

Two layers (4,5) 10.1 100.9 10.5 10.1 101.0 10.7
Two layers (5,4) 11.1 102.8 11.7 9.5 101.6 10.1
Two layers (6,8) 8.7 100.9 10.1 9.0 101.4 9.8
Two layers (8,6) 10.9 99.3 12.9 8.2 101.4 9.3
Two layers (8,9) 9.2 101.7 9.7 9.3 101.4 10.0
Two layers (9,8) 8.5 101.0 8.9 9.2 101.4 10.0

Two layers (8,10) 14.6 102.8 15.7 9.3 101.6 10.1
Two layers (10,8) 7.7 101.1 8.6 10.4 101.8 11.3
Two layers (10,15) 9.9 101.5 10.9 9.4 102.1 10.0
Two layers (15,10) 10.2 101.4 12.0 6.4 100.4 7.4
Two layers (15,20) 7.5 101.0 8.3 9.2 102.1 10.1
Two layers (20,15) 9.4 101.3 10.4 8.8 101.6 9.4
Two layers (20,25) 8.9 102.6 9.1 6.6 100.6 7.9
Two layers (25,20) 9.4 102.2 10.2 9.2 101.6 9.9

The influence of a transfer function on the accuracy of f’cc prediction is shown in
Table 5. Due to the highest accuracy obtained by the Bayesian regularization algorithm,
the influence of the transfer function was examined using this algorithm. Various transfer
functions, such as tansig, logsig, pureline, Elliot sigmoid (elliotsig), and triangular basis
(tribas), were studied. It should be noted that various combinations of a transfer function
were initially studied to find the highest accuracy for f’cc prediction. However, only a few
of them are displayed in Table 5 due to the similarity of results. According to the table,
tansig was the transfer function developing the most accurate prediction for f’cc. Table 6
displays the final ANN parameters for f’cc model.
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Table 5. Summary of different studied cases for transfer function in predicting f’cc.

Transfer Function AAE (%) M (%) RMSE (MPa)

tansig-tansig 6.4 100.4 7.4

logsig-logsig 8.4 101.2 9.9

logsig-tansig 10.2 105.0 11.2

pureline-pureline 14.0 103.8 14.1

tansig-pureline 8.5 101.1 9.1

elliotsig-elliotsig 9.9 101.8 10.8

tribas-tribas 20.1 105.8 22.9

purelin-logsig 11.2 105.0 12.2

Table 6. Final ANN parameters for prediction models.

Parameter
Number of

Hidden Layers
Number of Beurons Training Function Transfer

Function
Learning

Rate
Objective
FunctionFirst Second

f’cc 2 15 10 Bayesian regularization tansig 0.005 MSE
εcu 2 6 8 Levenberg–Marquardt tansig 0.001 MSE

εh,rup 2 10 15 Bayesian regularization tansig 0.005 MSE
f’c1 1 25 - Bayesian regularization tansig 0.005 MSE
εc1 2 25 20 Levenberg–Marquardt tansig 0.001 MSE

The developed model performance in predicting f’cc is illustrated in Figure 4. Accord-
ing to Figure 4a, experimental and predicted f’cc had a close consistency. In this figure, a
45◦ line was added, which is a representative of the perfect agreement. Based on Figure 4b,
the best match with the imposed goal for accuracy (MSE) was observed at epoch’s number
833. K-fold cross-validation was applied on the final ANN model for prediction of f’cc. This
analysis was performed to assess the machine learning performance on unseen data. In this
analysis, the database was randomly split in a K division. The popular value for K ranges
was 5 to 10. One of the K portions of the database was considered as a test dataset, and all
remaining K-1 portions were considered as a training dataset. The ANN analysis was per-
formed and the obtained statistical indicators, which showed the model performance, were
kept. This procedure was repeated for K times, and a comparison between the obtained
statistical indicators was made. By this procedure, each individual dataset could be used at
least one time as a test dataset, and K-1 time as a training dataset. It should be noted that, in
this study, AAE was used to compare the performance of the models using various training
and test datasets, i.e., K-fold cross-validation. Figure 4c illustrates the obtained AAE by
K-fold cross-validation. In this figure, lower limit, upper limit, and average of the obtained
AAE were shown. Maximum AAE was obtained at 10.2%, and the minimum value was
obtained at 6.4%. This indicates that dataset selection caused a variation of accuracy in the
developed model.

5.1.2. εcu

A similar procedure to that used for f’cc was performed to find the best ANN architec-
ture for predicting εcu. The obtained outcome for independent variables variations and the
number of layers is presented in Table 7. Based on the table, the combination of variables
with the Bayesian regularization algorithm offered the highest accuracy compared to the
other algorithms. Equation (6) presents the best composition of input variables to obtain
the highest accuracy for the prediction of εcu.

εcu = f
(

f ′co,
Kl
f ′co

, ε f u, k2, E f , t f , f f , εco, D
)

, (6)
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where k2 is strain enhancement coefficient proposed by Fallah Pour et al. [4]. As shown
in Table 2, simultaneous use of f’co and εco could lead to multicollinearity in εcu model.
However, the obtained results of εcu showed that using both parameters in predicting the
model resulted in a more accurate prediction.
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Figure 4. Performance of a developed model for compressive strength (f’cc): (a) Comparison of model
prediction and experimental values, (b) performance accuracy, and (c) cross-validation analysis.

Table 7. Summary of different studied cases for input variables for εcu.

Levenberg–Marquardt

10 Neurons 15 Neurons 20 Neurons 25 Neurons 30 Neurons

Input
Variables

AAE
(%)

M
(%)

RMSE
(%)

AAE
(%)

M
(%)

RMSE
(%)

AAE
(%)

M
(%)

RMSE
(%)

AAE
(%)

M
(%)

RMSE
(%)

AAE
(%)

M
(%)

RMSE
(%)

f’co, Kl/f’co,
εfu

32.6 96.3 0.005 31.8 99.3 0.005 31.3 101.1 0.005 35.0 98.5 0.006 37.0 96.5 0.007

f’co, Kl/f’co,
εfu, k2

35.2 102.2 0.006 30.5 101.1 0.006 31.0 103.1 0.005 30.7 99.9 0.005 39.4 113.3 0.007

f’co, Kl/f’co,
εfu, k2, Ef

32.3 100.4 0.005 29.4 98.0 0.005 28.6 102.0 0.005 37.4 86.7 0.006 25.8 100.1 0.005

f’co, Kl/f’co,
εfu, k2, Ef,

tf

32.3 100.4 0.0055 32.6 101.0 0.005 25.6 101.8 0.005 40.2 90.1 0.006 25.6 101.8 0.005

f’co, Kl/f’co,
εfu, k2, Ef,

tf, ff
28.6 99.3 0.005 25.0 106.2 0.004 24.4 101.0 0.005 23.7 101.3 0.005 22.4 104.9 0.004

f’co, Kl/f’co,
εfu, k2, Ef,

tf, ff, εco, D
31.4 64.5 0.006 24.5 102.9 0.004 22.4 103.4 0.004 20.1 109.1 0.004 20.9 56.3 0.004
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Table 7. Cont.

Bayesian Regularization

10 Neurons 15 Neurons 20 Neurons 25 Neurons 30 Neurons

Input
Variables

AAE
(%)

M
(%)

RMSE
(%)

AAE
(%)

M
(%)

RMSE
(%)

AAE
(%)

M
(%)

RMSE
(%)

AAE
(%)

M
(%)

RMSE
(%)

AAE
(%)

M
(%)

RMSE
(%)

f’co, Kl/f’co,
εfu

30.6 100.5 0.005 29.3 101.8 0.005 34.0 100.0 0.006 30.5 99.1 0.005 29.5 97.1 0.006

f’co, Kl/f’co,
εfu, k2

29.7 99.8 0.005 29.7 100.8 0.005 29.6 99.7 0.005 31.6 106.2 0.005 30.7 99.5 0.005

f’co, Kl/f’co,
εfu, k2, Ef

26.5 101.2 0.005 28.5 103.2 0.005 21.4 103.2 0.004 19.9 102.7 0.004 19.0 100.2 0.004

f’co, Kl/f’co,
εfu, k2, Ef,

tf

26.5 101.8 0.005 23.9 100.0 0.004 21.8 100.9 0.004 18.2 99.9 0.003 21.8 100.9 0.004

f’co, Kl/f’co,
εfu, k2, Ef,

tf, ff
22.9 102.1 0.004 21.2 115.0 0.004 18.2 100.9 0.004 16.9 100.3 0.003 21.4 84.9 0.004

f’co, Kl/f’co,
εfu, k2, Ef,

tf, ff, εco, D
21.5 103.8 0.004 17.9 102.4 0.004 16.3 99.5 0.004 14.8 100.9 0.003 14.9 99.9 0.004

Scaled Conjugate Gradient

10 Neurons 15 Neurons 20 Neurons 25 Neurons 30 Neurons

Input
Variables

AAE
(%)

M
(%)

RMSE
(%)

AAE
(%)

M
(%)

RMSE
(%)

AAE
(%)

M
(%)

RMSE
(%)

AAE
(%)

M
(%)

RMSE
(%)

AAE
(%)

M
(%)

RMSE
(%)

f’co, Kl/f’co,
εfu

40.6 101.1 0.006 47.6 104.5 0.007 35.7 99.1 0.006 42.1 103.1 0.007 44.1 101.1 0.008

f’co, Kl/f’co,
εfu, k2

42.0 98.7 0.007 40.2 100.4 0.006 44.8 100.6 0.007 36.7 105.0 0.006 35.4 99.7 0.006

f’co, Kl/f’co,
εfu, k2, Ef

41.9 102.8 0.007 39.6 104.1 0.006 33.1 99.4 0.005 47.7 106.5 0.007 49.5 120.5 0.008

f’co, Kl/f’co,
εfu, k2, Ef,

tf

48.6 127.3 0.007 40.9 100.0 0.007 35.4 97.5 0.006 41.2 107.0 0.007 35.4 97.5 0.006

f’co, Kl/f’co,
εfu, k2, Ef,

tf, ff
41.8 95.6 0.007 38.6 97.6 0.006 41.0 101.4 0.007 40.1 103.3 0.006 40.4 93.4 0.007

f’co, Kl/f’co,
εfu, k2, Ef,

tf, ff, εco, D
39.1 112.6 0.007 42.9 102.0 0.006 34.4 107.5 0.006 36.1 103.2 0.006 36.7 96.1 0.006

ANN parameters, which offered more accurate model for predicting εcu, are presented
in Table 6. According to the table, the Levenberg–Marquardt algorithm and the tansig
transfer function with two hidden layers of six and eight neurons offered the most accurate
and simple ANN model for predicting εcu. Cross-validation analysis was carried out on the
final ANN map. The developed model performance for εcu is shown in Figure 5. Based on
Figure 5a, the predicted εcu values were close to experimental εcu values. Figure 5b exhibits
that the considered goal as limit for BP neural network analysis of εcu reached at epoch of
95. Additionally, it is shown in Figure 5c that, similar to f’cc, the selection of the dataset
exhibited a major influence on the εcu model accuracy.
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Figure 5. Performance of a developed model for ultimate axial strain (εcu): (a) Comparison of model
prediction and experimental values, (b) performance accuracy, and (c) cross-validation analysis.

5.1.3. εh,rup

A similar procedure explained for f’cc and εcu was followed to determine the most
accurate BP neural network model for εh,rup prediction. Based on the obtained results,
input variables presented in Equation (7) with the Bayesian regularization algorithm and
25 neurons developed the most accurate predictions of εh,rup.

εh,rup = f
(

f ′co, εco, Kl , E f , t f , f f , D, H
)

, (7)

According to Table 6, using two hidden layers having 10 and 15 neurons in each
hidden layer offered the most accurate model. Similar to f’cc and εcu, applying tansig
as the transfer function led to the development of the most accurate prediction of εh,rup
when compared to other transfer functions. Figure 6 exhibits the developed εh,rup model
performance. Based on Figure 6a, predicted εh,rup had close values to experimental εh,rup
values. In Figure 6b, the best match between accuracy criteria for the ANN model and
the least difference between train and validation datasets was at epoch of 395. Figure 6c
displays that, similar to f’cc and εcu, the performance of the ANN depended significantly
on the selection of different types of datasets, i.e., train, test, and validation.
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Figure 6. Performance of a developed model for hoop rupture strain (εh,rup): (a) Comparison of model
prediction and experimental values, (b) performance accuracy, and (c) cross-validation analysis.

5.2. Transition Zone

Transition zone (f’c1, εc1) determines the point in which the first ascending nonlin-
ear segment shifts toward the second ascending quasi-linear segment on the curve. As
explained for the ultimate condition, using a similar database to the previous work of
this research group offers an ability to compare the developed models with existing best
performing models.

5.2.1. f’c1

Equation (8) presents the best composition of input variables for the prediction of f’c1
using an ANN analysis.

f ′c1 = f
(

f ′co, Kl ,
Kl
f ′co

, ε f u, E f , t f , f f , D, H
)

, (8)

Table 8 exhibits the obtained Pearson’s correlation coefficients for all input variables
and output data for a transition zone. As can be seen, similar to the ultimate condition, f’co
and εco had maximum correlation, and the best prediction was obtained when only f’co was
considered. As shown in Table 6, one hidden layer having 25 neurons with the Bayesian
regularization algorithm and tansig as a transfer function was considered as the final ANN
prediction parameters for f’c1. Although an increasing hidden layers number could cause
increasing the f’c1 prediction accuracy, the improvement of the accuracy was not significant.

The performance of the developed model for f’c1 is illustrated in Figure 7. Figure 7a
exhibits that the values recorded by experiments and model predictions had a good agree-
ment. Figure 7b illustrates that the accuracy goal in f’c1 analysis was met at epoch of 136.
Figure 7c illustrates the K-fold cross-validation for f’c1 prediction. As can be seen, the
variation of test datasets did not significantly influence the accuracy of the f’c1 model.



Appl. Sci. 2023, 13, 3038 16 of 25

Table 8. Pearson’s correlation between input variables for the transition zone.

Ef tf D ff εco f’co Kl Kl/f’co εfu

f’c1

Ef 1.0
tf −0.453 1.0
D 0.047 0.230 1.0
ff 0.314 −0.431 0.021 1.0

εco −0.234 0.548 −0.332 −0.166 1.0
f’co −0.291 0.712 −0.054 −0.242 0.888 1.0
Kl 0.401 0.455 −0.057 0.024 0.471 0.471 1.0

Kl/f’co 0.648 −0.066 0.003 0.149 −0.275 −0.281 0.594 1.0
εfu −0.909 0.556 0.009 −0.557 0.249 0.342 −0.307 −0.567 1.0

εc1

Ef 1.0
tf −0.523 1.0
D 0.063 0.197 1.0
ff 0.922 −0.435 0.116 1.0

εco −0.121 0.497 −0.374 −0.135 1.0
f’co −0.218 0.679 −0.071 −0.208 0.872 1.0
Kl 0.140 0.643 −0.056 0.197 0.618 0.622 1.0

Kl/f’co 0.372 0.197 −0.008 0.435 −0.039 −0.128 0.661 1.0
εfu −0.969 0.503 −0.030 −0.821 0.104 0.215 −0.144 −0.377 1.0
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Figure 7. Performance of a developed model for axial strength at a transition point (f’c1): (a) Com-
parison of model prediction and experimental values, (b) performance accuracy, and (c) cross-
validation analysis.
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5.2.2. εc1

The most accurate model for predicting εc1 by variation of input data was obtained
by using 30 neurons in one hidden layer and the Levenberg–Marquardt algorithm with
the tansig transfer function. An in-depth investigation on the correlation between input
variables was performed similar to the other prediction models, and the obtained result was
similar to that of εcu and εh,rup. The obtained results revealed that the Pearson’s correlation
for f’co and εco had the highest correlation coefficient, and only one of these input variables
should be used to avoid multicollinearity, as illustrated in Table 8. However, the maximum
accuracy was obtained when both f’co and εco were used. Equation (9) presents the input
parameters, which offered the highest accuracy for εc1 prediction.

εc1 = f
(

f ′co,
Kl
f ′co

, Kl , , E f , t f , f f , εco, D
)

, (9)

As displayed in Table 6, using two hidden layers with 25 and 20 neurons developed
the most accurate predictions for εc1. Furthermore, analysis of the transfer function showed
that tansig offered the most accurate εc1. The performance of the developed model for εc1 is
shown in Figure 8. Based on Figure 8a, similar to other key reference points, the predicted
values of εc1 were in good consistency with the recorded values in the experiments. Based
on Figure 8b, the imposed criteria on MSE in the analysis was respected early in the
calculation. Finally, as per Figure 8c, AAE varied significantly by the variation of test
dataset of εc1.
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Figure 8. Performance of a developed model for axial strain at a transition point (εc1): (a) Comparison of
model prediction and experimental values, (b) performance accuracy, and (c) cross-validation analysis.
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6. Model Verification
6.1. Sensitivity Analysis

For evaluating the impact of different independent input variables on developed
prediction models, Equation (10) is used. This equation is used by various studies in
data-driven methods (e.g., [43,44]).

r(Inpk, µk) =
∑n

i=1
(

Inpk,i − Inpk
)
(µi − µ)√

∑n
i=1
(

Inpk,i − Inpk
)2

∑n
i=1(µi − µ)2

, (10)

where r is the relevance factor. Inpk,i and Inpk are the ith of the kth and average of kth
input variable, respectively. µi is ith of the kth dependent variable, and µ is average of
kth dependent variable. The results of sensitivity analysis for assessing the impact of each
input on the ultimate condition predictions are observed in Figure 9. Based on Figure 9a, Kl
and f’co had highest impact on predicting f’cc. Moreover, all the input variables exhibited
a positive influence on f’cc, except ff and εfu. Conversely, εcu prediction was significantly
influenced by εfu, according to Figure 9b. Additionally, Kl/f’co, tf, and k2 developed a
positive influence, the same as εfu, but other input variables showed a negative effect on εcu
prediction. It should be mentioned that D had a negative influence on the εcu prediction.
According to Figure 9c, the only parameter with a positive influence on εh,rup prediction
was tf, which was physically expected. Other input data, including Kl, Ef, and f’co, showed
a negative influence. Moreover, height and diameter slightly influenced εh,rup prediction,
and their influence was negative.
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Figure 9. Obtained relevance factor for ultimate condition: (a) f’cc, (b) εcu, and (c) εh,rup.
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Figure 10 displays the influence of different input variables on the prediction of the
transition zone of the stress–strain curve. According to Figure 10a, geometry parameters
of concrete columns (i.e., D and H) slightly influenced the f’c1 prediction. Moreover, f’co,
Kl, and tf were the three parameters with the highest influence on f’c1 prediction, and their
influences were positive. Additionally, Ef, ff, and Kl/f’co negatively influenced the f’c1
prediction. According to Figure 10b, there were two input variables of Ef and ff, which
negatively influenced the prediction of εc1, and other variables had a positive influence. It
should be noted again that D as a geometry parameter slightly influenced εc1 prediction,
similar to f’c1 and εh,rup and opposite to εcu.
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Figure 10. Obtained relevance factor for transition zone: (a) f’c1 and (b) εc1.

6.2. Model Validation

Various statistical indicators were used in this study to verify the accuracy of the
predictions. These indicators were RMSE, MAE, k, k’, and R2

o . k and k’ are the regression
slope through the origin, and R2

o is the squared correlation coefficient. k is calculated by
plotting experimental values against prediction values. Conversely, k’ is the line slope by
plotting prediction against experimental values. It should be noted that k and k’ were used
by Golbraikh and Tropsha [45], and R2

o was introduced by Soleimani et al. [46]. Table 9
displays the statistical indicators used for predicted parameters of this study. It should be
noted that the used thresholds of the statistical indicators were proposed in Refs. [46,47].
Based on the table, all the criteria were satisfied for all the predictions, except for εc1 where
one of the criteria, i.e., Rm, was not satisfied. Figure 11 shows the box plot of f’c1 and εc1 of
this study. These parameters were selected as representative of the results. As can be seen
in the figure, there were only a few samples where their predictions were in out-layers.
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Table 9. Statistical indices for external validation of the developed models.

Index Threshold
Transition Zone Ultimate Condition

f’c1 εc1 f’cc εcu εh.rup

R =
∑n

i=1(hi−hi)(ti−ti)√
∑n

i=1 (hi−hi)
2

∑n
i=1(ti−ti)

2
R > 0.8 0.99 0.84 0.98 0.94 0.96

k = ∑n
i=1(hiti)

∑n
i=1 hi

2 0.85 < k < 1.15 1.00 0.98 0.99 0.97 0.98

k′ = ∑n
i=1(hiti)
∑n

i=1 ti
2 0.85 < k′ < 1.15 0.99 1.02 1.01 1.03 1.02

Rm = R2
(

1−
√∣∣R2 − R2

O

∣∣)
R2

O = 1− ∑n
i=1(ti−hO

i )
2

∑n
i=1 (ti−ti)

2 ,

hO
i = k ti

Rm > 0.5

Should be close to 1

0.87

0.99

0.33

0.99

0.76

0.99

0.60

0.99

0.67

0.99

R2 Should be close to 1 0.98 0.71 0.95 0.89 0.92

RMSE =

√
1
n

n
∑

i=1
(hi − ti)

2 Should be minimum
(based on output range)

3.47 0.0005 7.45 0.003 0.001

MAE = 1
n

n
∑

i=1
|hi − ti|

Should be minimum
(based on output range) 2.36 0.0003 4.67 0.002 0.001

7. Comparison of the Proposed and Existing Models

As explained previously, few studies used various types of a neural network method
in predicting the ultimate point of FRP-confined concrete. These studies mostly used a
neural network to predict f’cc, and only two research studies focused on εcu. In this section,
developed predictions of the ultimate condition by an ANN were compared using R2. The
accuracy of the transition zone prediction was evaluated by comparing the proposed model
with other design-oriented models.

7.1. Ultimate Condition

Table 10 illustrates the comparison of f’cc prediction by the developed model and
that by existing ANN models (e.g., [48,49]). As can be seen, although a larger number of
datasets was used in this study, the ANN model developed in this study offered a higher
accuracy than the existing ANN models.

Table 10. Comparison between developed ANN models to predict f’cc.

Model Year Number of Data Prediction
Parameter R2-All

Naderpour et al. [25] 2010 213 f’cc 0.89
Jiang et al. [16] 2020 169 f’cc 0.98

Keshtegar et al. [48] 2021 780 f’cc/f’co 0.88
Cevik and Cabalar [23] 2008 110 f’cc 0.97

Cevik [49] 2011 180 f’cc/f’co 0.94 *
Jalal and Ramezanianpour [24] 2012 128 f’cc 0.95

Proposed model - 836 f’cc 0.99

* The presented R2 is only for the test dataset.

A comparison between the accuracy of the existing ANN models and the ANN model
developed in this study to predict εcu is presented in Table 11. Based on the table, the
proposed model offered a comparable accuracy while the number of analyzed datasets was
largely compared to existing ANN models.
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Table 11. Comparison between developed ANN models to predict εcu.

Model Year Number of Data Prediction
Parameter R2-All

Jiang et al. [16] 2020 169 εcu 0.95
Keshtegar et al. [48] 2021 780 εcu/εco 0.86

Proposed model - 836 εcu 0.89

As explained previously, using a similar database offers an efficient instrument to
compare the obtained accuracy of the proposed models with available best performance
models. Tables 12 and 13 present the accuracy of the proposed model and best performing
models for estimating f’cc (e.g., [50–55]) and εcu (e.g., [56–59]), respectively. Based on the
tables, the model by Fallah Pour et al. [4] had the highest accuracy among existing models
in predicting f’cc. In addition, the model by Lim and Ozbakkaloglu [9] had the highest
accuracy among existing models in predicting εcu. However, the proposed ANN models
in this study had a higher accuracy than these best performing models in predicting f’cc
and εcu.

Table 12. Prediction statistics of the best performing f’cc models.

Model Test Data AAE (%) M (%) SD (%) RMSE (MPa)

Fallah Pour et al. [4] 836 12.3 100.0 16.3 14.9
Lim et al. [27] 836 12.7 105.0 17.1 15.2

Lim and Ozbakkaloglu [10] 836 12.9 102.9 16.8 14.6
Berthet et al. [50] 836 13.0 104.1 18.6 17.9

Wu and Zhou [51] 836 13.3 107.2 18.9 17.6
Pham and Hadi [33] 836 14.0 99.2 18.2 17.3

Al-Salloum [52] 836 14.1 108.7 21.0 22.0
Wei and Wu [53] 836 14.3 108.6 20.6 21.1

Wu and Wang [54] 836 14.3 108.6 20.6 21.1
Cevik [49] 836 20.2 107.0 30.1 19.8

Cevik et al. [55] 836 22.1 104.1 33.6 27.6

Proposed model 836 6.4 100.4 9.8 7.4

Table 13. Prediction statistics of the best performing εcu models.

Model Test Data AAE (%) M (%) SD (%) RMSE (%)

Lim and Ozbakkaloglu [10] 571 20.1 97.5 23.9 0.50
Tamuzs et al. [56] 571 20.7 106.5 28.7 0.50

Fallah Pour et al. [4] 571 21.0 98.1 25.9 0.50
Teng et al. [57] 571 22.2 122.1 34.1 0.66
Lim et al. [27] 571 22.3 98.2 27.9 0.52

Binici [58] 571 22.6 124.1 37.7 0.85
Youssef et al. [8] 571 22.7 112.8 34.8 0.71
Berthet et al. [50] 571 23.2 121.5 41.9 0.75
Wei and Wu [53] 571 25.4 103.9 31.3 0.62

Pham and Hadi [33] 571 26.1 129.8 40.5 0.85
Miyauchi et al. [59] 571 27.4 122.1 40.9 0.65

Proposed model 571 14.5 100.8 20.2 0.30

7.2. Transition Zone

Tables 14 and 15 present the accuracy of the proposed model and best performing
models to predict f’c1 and εc1. Based on these tables, the models by Fallah Pour et al. [4]
had the highest accuracy among existing models in predicting f’c1 and εc1. However, the
proposed ANN models in this study offered a higher accuracy than these best performing
models in predicting the transition zone.
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Table 14. Prediction statistics of the best performing f’c1 models.

Model Test Data AAE (%) M (%) SD (%) RMSE (MPa)

Fallah Pour et al. [4] 256 8.5 98.0 9.8 8.5
Saafi at al. [6] 256 8.5 97.5 11.6 10.2

Lim and Ozbakkaloglu [10] 256 8.8 95.1 10.1 9.0
Youssef et al. [8] 256 9.2 96.7 12.8 11.5

Toutanji [7] 256 9.8 103 13.1 10.5

Proposed model 256 3.1 100.3 5.3 2.4

Table 15. Prediction statistics of the best performing εc1 models.

Model Test Data AAE (%) M (%) SD (%) RMSE (%)

Fallah Pour et al. [4] 228 14.7 98 18.6 0.08
Saafi at al. [6] 228 15 101 18.8 0.08
Toutanji [7] 228 15.6 103 19.3 0.08

Youssef et al. [8] 228 22.7 118 22.4 0.1

Proposed model 228 8.8 100.2 10.9 0.05

8. Conclusions

This study has presented the findings on the development of ANN models to predict
transition and ultimate zones of FRP-confined concrete based on readily available parame-
ters. Sensitivity analysis and model validation were used to verify the influence of the input
parameters on the proposed models. It was shown that the accuracy of the ANN models for
predicting ultimate condition was higher compared to that of the best performing existing
models developed by different approaches. In addition, the ANN models proposed in this
study offered a higher or similar accuracy compared to existing ANN models to predict
the ultimate condition while a larger number of datasets was used in this study. Moreover,
the developed ANN models used to predict the transition zone had significantly higher
accuracy compared to best performing existing models. These observations indicate that
the proposed ANN models captured the impact of the lateral confinement by FRP on the
ultimate and transition zones of the confined concretes with a more robust performance
compared to the existing models.
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Abbreviations

Ef elastic modulus of fiber
ff ultimate tensile strength of fiber
D diameter of FRP-confined concrete
εf ultimate tensile strain of fiber
f’co compressive strength of unconfined concrete
εco axial strain of unconfined concrete at f’co
tf thickness of FRP tube
Kl lateral stiffness
Kl/f’co normalized lateral stiffness
f’cc ultimate strength of FRP-confined concrete
εcu ultimate strain of FRP-confined concrete
εh,rup strain of FRP tube at rupture
f’c1 axial strength of FRP-confined concrete at transition zone
εc1 axial strain of FRP-confined concrete at transition zone
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