Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = hollow tubulous structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 25965 KiB  
Article
MIL-Derived Hollow Tubulous-Shaped In2O3/ZnIn2S4 Z-Scheme Heterojunction for Efficient Antibacterial Performance via In Situ Composite
by Jiao Duan, Hui Zhang, Jie Zhang, Mengmeng Sun and Jizhou Duan
Nanomaterials 2024, 14(16), 1366; https://doi.org/10.3390/nano14161366 - 21 Aug 2024
Cited by 3 | Viewed by 1394
Abstract
In this study, a hollow tubulous-shaped In2O3 derived from MIL (MIL-68 (In)) exhibited an enhanced specific surface area compared to MIL. To further sensitize In2O3, ZnIn2S4 was grown in situ on the derived [...] Read more.
In this study, a hollow tubulous-shaped In2O3 derived from MIL (MIL-68 (In)) exhibited an enhanced specific surface area compared to MIL. To further sensitize In2O3, ZnIn2S4 was grown in situ on the derived In2O3. The 40In2O3/ZnIn2S4 composite (1 mmol ZnIn2S4 loaded on 40 mg In2O3) exhibited degradation rates of methyl orange (MO) under visible light (80 mW·cm−2, 150 min) that were 17.9 and 1.4 times higher than those of the pure In2O3 and ZnIn2S4, respectively. Moreover, the 40In2O3/ZnIn2S4 exhibited an obviously improved antibacterial performance against Pseudomonas aeruginosa, with an antibacterial rate of 99.8% after visible light irradiation of 80 mW cm−2 for 420 min. The 40In2O3/ZnIn2S4 composite showed the highest photocurrent density, indicating an enhanced separation of photogenerated charge carriers. Electron spin resonance results indicated that the 40In2O3/ZnIn2S4 composite generated both ·O2 and ·OH radicals under visible light, whereas ·OH radicals were almost not detected in ZnIn2S4 alone, suggesting the presence of a Z-scheme heterojunction between In2O3 and ZnIn2S4, thereby enhancing the degradation and antibacterial capabilities of the composite. This offers fresh perspectives on designing effective photocatalytic materials for use in antibacterial and antifouling applications. Full article
(This article belongs to the Special Issue Heterogeneous Photocatalysts Based on Nanocomposites)
Show Figures

Figure 1

18 pages, 6420 KiB  
Article
Bioengineered Cystinotic Kidney Tubules Recapitulate a Nephropathic Phenotype
by Elena Sendino Garví, Rosalinde Masereeuw and Manoe J. Janssen
Cells 2022, 11(1), 177; https://doi.org/10.3390/cells11010177 - 5 Jan 2022
Cited by 6 | Viewed by 3409
Abstract
Nephropathic cystinosis is a rare and severe disease caused by disruptions in the CTNS gene. Cystinosis is characterized by lysosomal cystine accumulation, vesicle trafficking impairment, oxidative stress, and apoptosis. Additionally, cystinotic patients exhibit weakening and leakage of the proximal tubular segment of the [...] Read more.
Nephropathic cystinosis is a rare and severe disease caused by disruptions in the CTNS gene. Cystinosis is characterized by lysosomal cystine accumulation, vesicle trafficking impairment, oxidative stress, and apoptosis. Additionally, cystinotic patients exhibit weakening and leakage of the proximal tubular segment of the nephrons, leading to renal Fanconi syndrome and kidney failure early in life. Current in vitro cystinotic models cannot recapitulate all clinical features of the disease which limits their translational value. Therefore, the development of novel, complex in vitro models that better mimic the disease and exhibit characteristics not compatible with 2-dimensional cell culture is of crucial importance for novel therapies development. In this study, we developed a 3-dimensional bioengineered model of nephropathic cystinosis by culturing conditionally immortalized proximal tubule epithelial cells (ciPTECs) on hollow fiber membranes (HFM). Cystinotic kidney tubules showed lysosomal cystine accumulation, increased autophagy and vesicle trafficking deterioration, the impairment of several metabolic pathways, and the disruption of the epithelial monolayer tightness as compared to control kidney tubules. In particular, the loss of monolayer organization and leakage could be mimicked with the use of the cystinotic kidney tubules, which has not been possible before, using the standard 2-dimensional cell culture. Overall, bioengineered cystinotic kidney tubules recapitulate better the nephropathic phenotype at a molecular, structural, and functional proximal tubule level compared to 2-dimensional cell cultures. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Figure 1

20 pages, 2815 KiB  
Review
Antimicrobial Applications of Clay Nanotube-Based Composites
by Anna Stavitskaya, Svetlana Batasheva, Vladimir Vinokurov, Gölnur Fakhrullina, Vadim Sangarov, Yuri Lvov and Rawil Fakhrullin
Nanomaterials 2019, 9(5), 708; https://doi.org/10.3390/nano9050708 - 7 May 2019
Cited by 76 | Viewed by 7646
Abstract
Halloysite nanotubes with different outer surface/inner lumen chemistry (SiO2/Al2O3) are natural objects with a 50 nm diameter hollow cylindrical structure, which are able to carry functional compounds both inside and outside. They are promising for biological applications [...] Read more.
Halloysite nanotubes with different outer surface/inner lumen chemistry (SiO2/Al2O3) are natural objects with a 50 nm diameter hollow cylindrical structure, which are able to carry functional compounds both inside and outside. They are promising for biological applications where their drug loading capacity combined with a low toxicity ensures the safe interaction of these nanomaterials with living cells. In this paper, the antimicrobial properties of the clay nanotube-based composites are reviewed, including applications in microbe-resistant biocidal textile, paints, filters, and medical formulations (wound dressings, drug delivery systems, antiseptic sprays, and tissue engineering scaffolds). Though halloysite-based antimicrobial materials have been widely investigated, their application in medicine needs clinical studies. This review suggests the scalable antimicrobial nano/micro composites based on natural tubule clays and outlines research and development perspectives in the field. Full article
(This article belongs to the Special Issue Nanotubes for Health, Environment and Cultural Heritages)
Show Figures

Figure 1

Back to TopTop