Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = high-strength bolted (HSB) connection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6155 KiB  
Article
Mechanical Properties and Stress–Strain Relationship of Grade 14.9 Superhigh-Tension Bolt (SHTB) Under Fire
by Xiaofang Xiao, Miao Ding, Yiqing Ge, Xiaohong Wang, Le Shen and Chunhua Ran
Materials 2025, 18(8), 1780; https://doi.org/10.3390/ma18081780 - 14 Apr 2025
Cited by 1 | Viewed by 660
Abstract
Grade 14.9 superhigh-strength bolts (SHTBs) are a type of high-strength steel bolt with a nominal tensile strength of 1400 MPa, which is significantly higher than the commonly used Grade 10.9 high-strength bolt (HSB), which has a nominal tensile strength of 1000 MPa. The [...] Read more.
Grade 14.9 superhigh-strength bolts (SHTBs) are a type of high-strength steel bolt with a nominal tensile strength of 1400 MPa, which is significantly higher than the commonly used Grade 10.9 high-strength bolt (HSB), which has a nominal tensile strength of 1000 MPa. The use of an SHTB can reduce the number of bolts required in connections or joints, leading to material savings and improved construction efficiency. However, like HSB, the mechanical properties of an SHTB can be significantly degraded at high temperatures, though the extent of this reduction may differ. In this study, the authors designed and conducted experiments on SHTBs under elevated temperatures including both vibration and tensile coupon tests. Based on the test data, the stress–strain curves and key mechanical properties such as the Young’s modulus, yield stress, ultimate stress, ultimate strain, percentage elongation, cross-sectional area reduction, and failure strain were obtained and analyzed for various high-temperature conditions. Furthermore, a new three-stage model was proposed to describe the stress–strain relationship of SHTBs under fire conditions. Additionally, empirical formulae were developed to predict the mechanical properties of SHTBs under elevated temperatures, providing valuable insights for engineering applications and fire safety design. Full article
Show Figures

Figure 1

19 pages, 4955 KiB  
Article
Degradation Behavior of the Preload Force of High-Strength Bolts after Corrosion
by Zhengyi Kong, Ya Jin, Shaozheng Hong, Quanwei Liu, Quang-Viet Vu and Seung-Eock Kim
Buildings 2022, 12(12), 2122; https://doi.org/10.3390/buildings12122122 - 2 Dec 2022
Cited by 14 | Viewed by 2803
Abstract
Corrosion significantly affects the structural behavior of members in a connection (i.e., the thickness of steel plates, the preload force of bolts, and the friction factor of steel plates). Safety assessment of corroded steel frames (i.e., beam-to-column connection, beams, or columns) has been [...] Read more.
Corrosion significantly affects the structural behavior of members in a connection (i.e., the thickness of steel plates, the preload force of bolts, and the friction factor of steel plates). Safety assessment of corroded steel frames (i.e., beam-to-column connection, beams, or columns) has been a major concern in engineering. In this work, an experiment of accelerated corrosion testing is carried out to obtain corroded specimens connected with high-strength bolts, and the preload force of high-strength bolts (PF-HSB) is monitored throughout the whole stage of the corrosion testing. Before the corrosion testing, the PF-HSB caused by the stress relaxation is also recorded. The PF-HSB decreases rapidly in the first five hours after the final screwing of bolts and it keeps stable after 100 h. The PF-HSB is seriously affected by corrosion, which decreases by 30.0% of the original preload force when the corrosion rate of steel plate reaches 3.5%. A finite element method for predicting the PF-HSB after corrosion is proposed. An estimation model for the PF-HSB considering the stress relaxation is established. A degradation model for predicting the PF-HSB after corrosion is also suggested, and is in good agreement with experimental data. The results of this research are of great significance for the safety assessment of in-service steel structures. Full article
(This article belongs to the Special Issue High Performance Steel Structures)
Show Figures

Figure 1

19 pages, 10374 KiB  
Article
Static Strength of Friction-Type High-Strength Bolted T-Stub Connections under Shear and Compression
by Gangnian Xu, Youzhi Wang, Yefeng Du, Wenshuai Zhao and Laiyong Wang
Appl. Sci. 2020, 10(10), 3600; https://doi.org/10.3390/app10103600 - 22 May 2020
Cited by 13 | Viewed by 3847
Abstract
The friction-type high-strength bolted (FHSB) T-stub connection has been widely used in steel structures, due to their good fatigue resistance and ease of installation. While the current studies on FHSB T-stub connections mainly focus on the structural behaviors under both shear and tensile [...] Read more.
The friction-type high-strength bolted (FHSB) T-stub connection has been widely used in steel structures, due to their good fatigue resistance and ease of installation. While the current studies on FHSB T-stub connections mainly focus on the structural behaviors under both shear and tensile force, no research has been reported on the mechanical responses of the connections under the combined effects of shear and compression. To make up for this gap, this paper presents a novel FHSB T-stub connection, which is simple in structure, definite in load condition, and easy to construct. Static load tests were carried out on 21 specimens under different shear–compression ratios, and the finite-element (FE) models were created for each specimen. The failure modes, initial friction loads and ultimate strengths of the specimens were compared in details. Then, 144 FE models were adopted to analyze the effects of the friction coefficient, shear–compression ratio, bolt diameter and clamping force on the initial friction load and ultimate strength. The results showed that the FHSB T-stub connection under shear and compression mainly suffers from bolt shearing failure. The load–displacement curve generally covers the elastic, yield, hardening and failure stage. If the shear–compression ratio is small and the friction coefficient is large, its curve only contains the elastic and failure stage. The friction coefficient and shear–compression ratio have great impacts on the initial friction load and ultimate strength. For every 1 mm increase in bolt diameter, the initial friction load increased by about 10%, while the ultimate strength increased by about 8.5%. For each 10% increase/decrease of the design clamping force, the initial friction load decreases/increases by 7.8%, while the ultimate load remains basically the same. The proposed formula of shear capacity and self-lock angles of FHSB T-stub connection can be applied to the design of CSS-enhanced prestressed concrete continuous box girder bridges (PSC-CBGBs) and diagonal bracing. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop