Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = high-rise building machine (HBM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12723 KiB  
Article
Predicting the Posture of High-Rise Building Machines Based on Multivariate Time Series Neural Network Models
by Xi Pan, Junguang Huang, Yiming Zhang, Zibo Zuo and Longlong Zhang
Sensors 2024, 24(5), 1495; https://doi.org/10.3390/s24051495 - 25 Feb 2024
Cited by 4 | Viewed by 1571
Abstract
High-rise building machines (HBMs) play a critical role in the successful construction of super-high skyscrapers, providing essential support and ensuring safety. The HBM’s climbing system relies on a jacking mechanism consisting of several independent jacking cylinders. A reliable control system is imperative to [...] Read more.
High-rise building machines (HBMs) play a critical role in the successful construction of super-high skyscrapers, providing essential support and ensuring safety. The HBM’s climbing system relies on a jacking mechanism consisting of several independent jacking cylinders. A reliable control system is imperative to maintain the smooth posture of the construction steel platform (SP) under the action of the jacking mechanism. Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Temporal Convolutional Network (TCN) are three multivariate time series (MTS) neural network models that are used in this study to predict the posture of HBMs. The models take pressure and stroke measurements from the jacking cylinders as inputs, and their outputs determine the levelness of the SP and the posture of the HBM at various climbing stages. The development and training of these neural networks are based on historical on-site data, with the predictions subjected to thorough comparative analysis. The proposed LSTM and GRU prediction models have similar performances in the prediction process of HBM posture, with medians R2 of 0.903 and 0.871, respectively. However, the median MAE of the GRU prediction model is more petite at 0.4, which exhibits stronger robustness. Additionally, sensitivity analysis showed that the change in the levelness of the position of the SP portion of the HBM exhibited high sensitivity to the stroke and pressure of the jacking cylinder, which clarified the position of the cylinder for adjusting the posture of the HBM. The results show that the MTS neural network-based prediction model can change the HBM posture and improve work stability by adjusting the jacking cylinder pressure value of the HBM. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

21 pages, 12159 KiB  
Article
Automatic Identification of the Working State of High-Rise Building Machine Based on Machine Learning
by Xi Pan, Tingsheng Zhao, Xiaowei Li, Zibo Zuo, Gang Zong and Longlong Zhang
Appl. Sci. 2023, 13(20), 11411; https://doi.org/10.3390/app132011411 - 18 Oct 2023
Cited by 8 | Viewed by 1858
Abstract
High-rise building machines (HBMs) play a crucial role in the construction of super-tall buildings, with their working states directly impacting safety, quality, and progress. Given their extensive floor coverage and complex internal structures, monitoring priorities should shift according to specific workflows. However, existing [...] Read more.
High-rise building machines (HBMs) play a crucial role in the construction of super-tall buildings, with their working states directly impacting safety, quality, and progress. Given their extensive floor coverage and complex internal structures, monitoring priorities should shift according to specific workflows. However, existing research has primarily focused on monitoring key HBM components during specific stages, neglecting the automated recognition of HBM workflows, which hinders adaptive monitoring strategies. This study investigates the critical states of HBM construction across various structural layers and proposes a method rooted in vibration signal analysis to determine the HBM’s working state. The method involves collecting vibration signals with a triaxial accelerometer, extracting five distinct vibration signal features, classifying these signals using a k-Nearest Neighbors (kNN) classifier, and finally, outputting the results through a classification rule that aligns with the actual workflow of the HBM. The method was implemented in super-high-rise buildings exceeding 350 m, achieving a measured accuracy of 97.4% in HBM working state recognition. This demonstrates its proficiency in accurately determining the construction state and facilitating timely feedback. Utilizing vibration signal analysis can enhance the efficiency and safety, with potential applications in monitoring large-scale formwork equipment construction processes. This approach provides a versatile solution for a wide range of climbing equipment used in the construction of super-tall buildings and towering structures. Full article
Show Figures

Figure 1

Back to TopTop