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Abstract: High-rise building machines (HBMs) play a critical role in the successful construction of
super-high skyscrapers, providing essential support and ensuring safety. The HBM’s climbing system
relies on a jacking mechanism consisting of several independent jacking cylinders. A reliable control
system is imperative to maintain the smooth posture of the construction steel platform (SP) under the
action of the jacking mechanism. Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),
and Temporal Convolutional Network (TCN) are three multivariate time series (MTS) neural network
models that are used in this study to predict the posture of HBMs. The models take pressure and
stroke measurements from the jacking cylinders as inputs, and their outputs determine the levelness
of the SP and the posture of the HBM at various climbing stages. The development and training of
these neural networks are based on historical on-site data, with the predictions subjected to thorough
comparative analysis. The proposed LSTM and GRU prediction models have similar performances in
the prediction process of HBM posture, with medians R2 of 0.903 and 0.871, respectively. However, the
median MAE of the GRU prediction model is more petite at 0.4, which exhibits stronger robustness.
Additionally, sensitivity analysis showed that the change in the levelness of the position of the SP
portion of the HBM exhibited high sensitivity to the stroke and pressure of the jacking cylinder, which
clarified the position of the cylinder for adjusting the posture of the HBM. The results show that
the MTS neural network-based prediction model can change the HBM posture and improve work
stability by adjusting the jacking cylinder pressure value of the HBM.

Keywords: high-rise building machine (HBM); steel platform (SP); neural networks (NNs);
multivariate time series (MTS); posture prediction

1. Introduction

High-rise building machines (HBMs) are innovative self-elevating steel-structure-
building machines designed for constructing super high-rise buildings [1–4]. They offer
several advantages: high automation, enhanced safety, simplified construction organiza-
tion, assured structural quality, and standardized processes [5–7]. These features contribute
to accelerated construction progress. Figure 1 illustrates the three-dimensional structural
details of the HBM [8–10]. The levelness of the steel platform (SP) represents the HBM’s
posture changes [11–13]. During the climbing process of the HBM, the telescopic support
device retracts from the structurally reinforced concrete shear wall, while the climbing
system supports the SP to ascend along the column guide rail. Once the SP reaches the
desired position, the telescopic support device is extended into the reserved hole of the
structurally reinforced concrete shear wall. However, due to uneven stacking loads on the
SP, the levelness of the SP may fluctuate. If excessive levelness deviation is not promptly
corrected, the HBM may undergo severe shape distortion, leading to collisions with obsta-
cles and halting the climbing [14]. In the early stages of HBM usage, workers employed the
hanging-line-pendant method and plumbing instruments to measure the HBM’s verticality.
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They used jacks to lift parts with low levelness, applying corrective forces to gradually
restore the SP’s levelness while continuing to climb [15,16]. Subsequently, climbing control
operators monitored the HBM’s posture information directly via signal and image displays
on the center console. Although this approach improved efficiency and reduced measure-
ment errors, it incurred significant costs. The detection equipment enhanced production
efficiency, minimized operational errors, ensured detection repeatability, and generated
extensive monitoring data [17–20]. However, these measures still failed to prevent levelness
deviations during the climbing process, addressing the complexity of repairing such devia-
tions and mitigating subjective errors in worker operations. Zuo et al. conducted a study
on the determination of concrete strength during the construction of HBMs by proposing a
remote real-time monitoring system [10]. Pan et al. collected the vibration frequency of
HBMs and utilized a machine learning method to categorize and assess the four primary
working states of this machinery [9]. They also proposed a method for monitoring and
issuing warnings during the climbing process of an HBM [8]. However, these methods are
primarily focused on monitoring and providing early warnings for the safe operation of
HBMs. There needs to be more in-depth research on predicting the future working state of
this machinery and dealing with potential dangers.

Figure 1. Schematic diagram of the HBM.

We have discovered that a change in posture of a HBM exhibits a multivariate time
series (MTS)-related process. To effectively capture the intricate patterns and dependencies
in time series data, neural networks (NNs) are a valuable tool [21–26]. NNs possess linear
and nonlinear fitting capabilities, making them adept at handling such data. Notably,
NN technology has shown promising results in prediction tasks [27–30]. It is important
to note, though, that these neural networks don’t do as well when they have to deal
with tasks that use MTS class information and simulations that have strong back-and-
forth correlations. Several articles from 2015 and 2020 have talked about recurrent neural
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networks (RNNs) [31–35]. These are a type of time series neural network that have memory
cells and feedback connections that make it easier for information to flow within the model
and handle strong back-and-forth dependencies well. Using a recursive structure, RNNs
retain contextual information from past observations and apply it to current or future
predictions. However, RNNs encounter challenges when dealing with long time series,
leading to gradient vanishing or exploding issues. Consequently, traditional RNNs excel at
solving short-term dependencies. Advanced architectures such as the Long Short-Term
Memory (LSTM) [36–38] and the Gated Recurrent Unit (GRU) [39–42] have been developed
to address this. LSTM employs memory cells and gating mechanisms to filter out the noise
and selectively capture long-term dependencies more efficiently. On the other hand, GRU
makes the LSTM structure simpler by only using hidden states to send information. This
cuts down on parameters and computational complexity while keeping the performance
the same in some situations. Not only are recurrent neural networks used to process time
series data, but so are Temporal Convolutional Neural Networks (TCNs) [43–46]. TCNs
modify the conventional approach of using two-dimensional convolutional kernels for
image processing by employing one-dimensional convolutional kernels to extract local
patterns and features. TCNs possess a large enough sensory field to find patterns and
regularities across a range of time scales by stacking multiple convolutional layers with
pooling operations.

Previous studies have demonstrated the remarkable capabilities of neural networks
in forecasting time series data. This study is organized as follows: Section 2 provides a
detailed explanation of the characterization of the HBM through sensor-based monitoring
during its climb. It also discusses the preprocessing techniques employed to handle this
data effectively. Moving on to Section 3, an in-depth exploration of three multivariate
time series-prediction models, namely the LSTM, GRU, and TCN models, is presented.
The technical approach adopted to predict the HBM’s posture in this study is also discussed.
Section 4 delves into an insightful comparison between the prediction results of these three
models and the actual values. It also includes a meticulous analysis of the potential sources
of errors generated by the models. Finally, Sections 5 and 6 present the discussion and
conclusions drawn from the research. It is shown that the suggested smart-prediction
system is better than the old ways of manipulating HBMs and reduces the hysteresis of
repairing the HBM’s posture.

2. The Posture of the HBM
2.1. Data Sources

In this work, we observed and analyzed the HBM climbing process at the West
Tower of the Shenzhen Xinghe Yabao Building project (356 m) in China. With an average
climbing frequency of once every five days, we embarked on an exploration utilizing a
dataset comprising 30 sets (days) of monitoring data. Each dataset, sampled at a rate
of one sample per second, encompassed 168,048 monitoring data points. These data
points comprised 68 sample characterizations, forming a foundation for our investigation.
As showcased in Figure 2, our monitoring efforts focused on observing and recording
the jacking stroke and pressure of 26 climbing jacking cylinders throughout the climbing
process. We also monitored the levelness of 16 crucial monitoring points on the steel
platform beam, as shown in Figure 3.
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Figure 3. Schematic layout of levelness-monitoring equipment.

2.2. The Pre-Processing of Monitoring Data

Figure 4 depicts the once-climbing process of the HBM, presenting a narrative of the
levelness of the SP, jacking cylinder jacking stroke, and jacking-cylinder pressure over
time. This intricate climbing process can be divided into five distinct phases: the pre-climb
stage, the preparation stage, the stable climbing stage, the closing of the climbing stage,
and the climbing-into-position stage. Remarkably, the pre-climbing and climbing-into-
position stages exhibited minimal changes in the posture of the HBM. On the other hand,
the preparation stage and the closing of the climbing stage are influenced by equipment-
operation errors arising from installing the jacking cylinders, such as support jacking
cylinder position errors and jacking cylinder tilt. And, we want, as the climb progresses
into the stabilized climbing stage, a gradual elimination of the levelness deviation of the
SP to become evident. In addition, the initial levelness deviation observed in the stable
climbing stage is not attributed to the climbing process itself. Consequently, our focus
narrows to studying and analyzing the data solely from the stable climbing stage, where
the SP’s levelness is relatively stable and reliable. To mitigate the occurrence of data jumps
during multiple stable climbs, we took measures to initialize the monitoring data for each
levelness of the SP at the commencement of every stable climb, ensuring the accuracy and
consistency of our analysis.
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(a)

(b)
Figure 4. One set of measured time-range data during one climb: (a) levelness-sensor monitoring
data, (b) jacking cylinder-monitoring instruments monitoring data.

To provide further insight into the study data, we conducted a brief analysis of the
monitoring data collected during the stabilized climbing stage. The jacking cylinder stroke
values ranged from −551.4 to 551.79, the jacking cylinder pressure values ranged from 0 to
53.4, and the SP levelness values ranged from −39.12 to 40.48.

3. Methodology

Selecting an appropriate machine learning algorithm is crucial to extracting valuable
insights from sensor-monitoring data during the HBM-climbing process. This algorithm
should uncover the hidden data and establish a mapping relationship between the HBM
climbing parameters and postures. In order to accurately predict postures in HBMs, the cho-
sen model must effectively handle MTS features and automatically capture the nonlinear
relationships present in the data. This study employs three MTS neural networks—LSTM,
GRU, and TCN—to predict the postures during HBM climbing.

3.1. MTS-Prediction Model
3.1.1. LSTM Model

The LSTM model, introduced by Hochreiter and Schmidhuber (1997) [47], addresses
the limitations of traditional RNNs by incorporating explicit memory-management mecha-
nisms. By explicitly adding and subtracting information (see Equation (1)) from the LSTM
state, the LSTM model ensures that each state cell remains constant over time. Moreover,
gated cells and carefully designed memory cells enable the model to preserve its long-term
memory while maintaining the relevance of the most recent state. This prevents information
distortion, disappearance, and sensitivity explosion, which could occur in other models
like Neural Turing Machines

St = St−1 + ∆St (1)

A typical LSTM cell, as illustrated in Figure 5a, consists of three key gates: the forget
gate, the input gate, and the output gate. These gates play a critical role in managing
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the memory of the network by modulating the activation of the weighted sum function
W(∗). As depicted in Equation (2) [47], the forget gate ft decides which information should
be retained or discarded. It utilizes a sigmoid function (σ(x) = 1

1+e−x ) to compute a
vector (output) based on the previous cell state st−1 and the current input information xt.
The purpose of this scaling is to rescale the values of each dimension of the data within
the range of [0, 1]. Subsequently, the sigmoid function σ(x) determines the relevance of the
current information and determines which information will contribute to the computation
of the cell state st. The input gate it determines the information that should be stored in
the cell state. It employs the sigmoid function σ(x) to compute its activation based on the
previous cell state st−1 and the current input information xt. The candidate cell state s̃t

is computed using the hyperbolic tangent function (ϕ(x) = ex−e−x

ex+e−x ), which yields a value
ranging from −1 to +1. The outputs of these computations (st−1 and s̃t) are combined to
update the current internal cell state st. Lastly, the output gate ot determines the final output
lstmout and the next hidden state ht. The output gate ot multiplies the previous hidden
state ht−1 and the current input information xt with the sigmoid function σ(x)-activation
output. These calculations determine the information that the hidden layer ht will carry.

ft = σ
(

W f st−1 + U f xt + b f

)
it = σ(Wist−1 + Uixt + bi)

ot = σ(Wost−1 + Uoxt + bo)

s̃t = ϕ(W(ot ⊙ st−1) + Uxt + b)
st = ft ⊙ st−1 + it ⊙ s̃t

ht = otϕ(st)

(2)
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Figure 5. Diagram of MTS prediction RNNs model: (a) schematic diagram of LSTM model,
(b) schematic diagram of GRU model.

3.1.2. GRU Model

The GRU model (Cho et al., 2014 [39]) is a simplified variant of the RNNs architecture.
Unlike the LSTM model, the GRU model consists of only two gates: the reset gate and
the update gate. Figure 5b illustrates the structure of the GRU model. As shown in
Equation (3) [39], in contrast to LSTM, GRU eliminates the need for a separate hidden
state h. Instead, it directly replaces the input gates it with (1 − zt), where zt represents the
update gate. The reset gate rt determines the combination of the input information xt and
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the previous cell state st−1. The update gate zt controls the retention of the previous cell
state st−1. The cell state st is then updated by combining all the computed information.

rt = σ(Wrst−1 + Urxt + br)

zt = σ(Wzst−1 + Uzxt + bz)

s̃t = ϕ(W(rt ⊙ st−1) + Uxt + b)
st = zt ⊙ st−1 + (1 − zt)⊙ s̃t

(3)

3.1.3. The TCN Model

The TCN model (Bai et al., 2018 [43]) is a one-dimensional dilated causal-convolutions
neural network (CNN) designed for solving time series problems. It incorporates the archi-
tecture of CNNs and introduces the concept of dilated causal convolutions. Figure 6 illus-
trates the main components of the TCN model. The TCN model utilizes a one-dimensional
dilated causal convolution with a filter size of 3 and a residual network structure. The com-
bination of causal convolution and dilated convolutions allows the convolutional layer
to expand its receptive field while strictly adhering to temporal constraints. This larger
receptive field enables the model to learn and extract historical information from multi-
variate time series data. The expansion convolution operation H(S) is employed in the
sequence unit S to process a one-dimensional time series input X = (x1, x2, . . . , xt−1),
where f : {0, 1, . . . , k − 1} is the filter. The operation is defined as [43]

H(S) = (X∗
d f )(S) =

k−1

∑
i=0

f (i) · XS−d·i (4)

where S represents the input sequence information, ∗ is the convolution operator, k denotes
the filter size, d = 2v represents the dilation factor, where i is the levelness of the network,
and S − d · i indicates the localization of specific historical information.

Input

1d =

Hidden

2d =

Hidden

4d =

output

1x 2x 3x 1tx -2tx -3tx -

1y 2y 3y 1ty -2ty -3ty -

(a)

Dropout
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Weight Norm
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Dropout
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Weight Norm

Dilated Causal Conv

+

1 1 Conv

(optional)

´

Residual block (k, d)

(b)

Figure 6. Schematic diagram of TCN model: (a) dilated causal convolution, (b) residual block
network structure.
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Additionally, the TCN model incorporates a residual network structure, which helps
address issues like gradient vanishing or explosion and model degradation during deep
neural network training. Typically, the TCN model consists of two layers of residual
modules. Each module comprises dilated causal convolution, weight normalization, ReLU-
activation function ( f (x) = max(0, x), where x is the input), and dropout. The previous
layer’s output serves as the input to the dilated causal convolution of the next layer,
ensuring that both the inputs xi and outputs xi+1 of the module have the exact dimensions.
An additional 1 × 1 convolution is applied to restore the original number of channels.

xi+1 = f (X +F (X)) (5)

where F (∗) refers to a series of transformations leading from one residual module to another.

3.2. The Architecture for the Posture-Prediction Model of HBMs
3.2.1. Data Standardization and Set Partitioning

The data obtained from different sensors often have varying size ranges, resulting in
sample data in the dataset having different scales. We perform standardized preprocessing
on the raw data to address this issue and prevent model bias towards certain features due to
the magnitude differences during training. In this experiment, we apply min–max normal-
ization to the sensor data samples, resulting in a value range of [−1, 1]. After normalization,
the scaled values of the sensor data samples Xnorm or Ynorm (where X represents the active
input dataset and Y represents the passive output dataset) can be expressed as follows:

Xnorm =
X − Xmin

Xmax − Xmin
(6)

where Xmax denotes the maximum value of the sample dataset, and Xmin denotes the
minimum value of the sample dataset.

The dataset is partitioned into a training set (80%), a validation set (10%), and a test
set (10%). The training set is utilized to train the neural network model. The validation set
is used to assess the performance of the untrained model, serving as a means to prevent
overfitting and underfitting. Finally, the test set evaluates the optimal model’s accuracy,
precision, and recall performance metrics.

3.2.2. The Evaluation of Predictive Performance

In this study, the mean absolute error (MAE) and coefficient of determination for
Goodness of Fit (R2) is used as an evaluation metric for the prediction model:

MAE =
1
m

m

∑
i=1

|yi − ŷi|

R2 = 1 − ∑m
i=1(yi − ŷi)

2

∑m
i=1(yi − ȳi)2

(7)

where m represents the total number of moments, yi denotes the actual value at moment i,
ŷi refers to the predicted value of the model output at moment i, and ȳi denotes the average
of all actual values.

The MAE can better reflect the reality of prediction-value errors. A more petite MAE
indicates a better prediction effect. On the other hand, R2 ranges between 0 and 1, where
a value closer to 1 indicates a better fit of the model to the data, suggesting a more vital
predictive capability.
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3.2.3. MTS-Prediction Architecture

The flowchart in Figure 7 illustrates the technical route employed in this study to
predict the HBM postures. Initially, the sensor-monitoring data of the HBM is preprocessed.
Subsequently, a MTS neural network model is trained using the training set data, while
the validation-set data is utilized for model selection and fine-tuning. This experiment
employs the root mean square error (RMSE) as the loss function:

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)2 (8)

In addition, the Adam optimizer was used to update the network parameters for
model training and model output.

Predicting the gesture of the HBM

Evaluate the prediction model

Data processing and preparation

     Intelligent 

predictive model

       Time-series 

neural network model        10%

Validation data

      10%

Testing data

       80%

Training data

ICCP climbing process 

sensor time-series data

Min-max normalization

      regularization

         Time-based 

sliding window processing

Gesture prediction

      modeling

Figure 7. Flowchart of the posture-prediction model framework for the HBM-climbing process.

Figure 8 illustrates this study’s three MTS neural network-model architectures. No-
tably, there are similarities between the LSTM and GRU model architectures. The LSTM,
GRU, and TCN functions are utilized in the hidden layers of these neural network-model
architectures. The weight initialization techniques used for all three functions are the
commonly used Xavier initialization, including the initialization of input gate, forget gate,
output gate, and candidate memory cell weights in the LSTM function, the initialization of
reset gate, update gate, and candidate hidden state weights in the GRU function, and the ini-
tialization of one-dimensional convolution kernel, residual block, and fully connected layer
weights in the TCN function. All three models in this experiment use 3 hidden layers to
make the prediction results are comparable and set the same learning rate η = 0.01. In order
to prevent overfitting, the Dropout function (1 − p = 0.2) is employed as a regularization
technique. It is worth mentioning that both the LSTM and GRU models implement the
Dropout function after the hidden layers, while the TCN model incorporates the Dropout
function within each TCN function. Finally, a fully connected layer is employed to achieve
a dimensionality reduction in the output.
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Figure 8. MTS neural network-model architecture: (a) LSTM model architecture, (b) GRU model
architecture, (c) TCN model architecture.

4. Results
4.1. Sensitivity Analysis

This study selected 26 jacking cylinder strokes and 26 jacking cylinder pressures
as the active inputs X for the multivariate analysis of HBM-climb posture-prediction.
The levelness of 16 monitoring points on the SP during the HBM climb was chosen as the
passive output Y.

Figure 9a,b illustrates the Pearson correlation coefficients ρX,Y (see Equation (9)) be-
tween the jacking cylinder stroke and the SP levelness, and between the jacking cylinder
pressure and the SP levelness, separately. The Pearson correlation coefficient provides
insight into the relationship between the jacking cylinder stroke, jacking cylinder pressure,
and the levelness of each position on the SP. Notably, the displacements of the SP at SZ01,
SZ03, SZ04, SZ07, SZ08, SZ09, SZ12, and SZ14 show a more pronounced response to the
activity of the jacking cylinder.

ρX,Y = corr(X, Y) =
cov(X, Y)

σXσY
=

E[(X − µX)(Y − µY)]

σXσY
(9)

where cov(∗, ∗) is the covariance and σ is the standard deviation.

4.2. Model Comparison and Evaluation

In this study, a posture-prediction model for HBM is constructed using the LSTM
neural network, GRU neural network, and TCN neural network. These models were
trained and validated using separate datasets. After 200 epochs with a batch size of 1024,
the models generated an intelligent prediction model for the 16-point levelness of the SP
in HBM.

The intelligent prediction model takes historical time series values of the monitored
stroke and pressure of the jacking cylinder as input, and the predicted time series values
of steel platform levelness as output. A test dataset was used to validate the final HBM
posture-prediction model. The prediction results of the LSTM, GRU, and TCN models
were compared with the actual levelness of the 16 monitoring points on the construction
platform, as shown in Figure 10.
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Figure 9. Sensitivity analysis of sensor-monitoring information during climbing of HBM: (a) Sen-
sitivity between jacking cylinder stroke and SP levelness, (b) sensitivity between jacking cylinder
pressures and SP levelness.

Figure 10. Predicted SP levelness using LSTM, GRU, and TCN models.

Based on the fluctuating patterns and peaks of the overall levelness, the LSTM and
GRU models exhibited a certain levelness of reliability in predicting the HBM postures.
However, the TCN model demonstrated relatively more significant prediction errors.
An in-depth analysis was conducted to evaluate the accuracy and predictive ability of the
three intelligent-prediction models. The goodness-of-fit correlation coefficient (R2) and
the mean absolute error (MAE) (see Equation (7)) were used as performance indicators,
as detailed in Table 1. The TCN model consistently exhibited MAE values generally
exceeding 1.0, indicating a substantial deviation between the predicted values and the
actual monitoring values. Similarly, the R2 values for the TCN model were predominantly
below 0.6, suggesting a lack of compatibility. For the LSTM model, MAE values surpassing
1.0 were observed at monitoring points SZ13, SZ15, and SZ16, with a significant error
of 7.305 at SZ13. The corresponding R2 values were less than 0.8 at SZ06, SZ10, SZ13,
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and SZ16, indicating poor fitting at these monitor points. The GRU model only exhibited a
MAE value greater than 1.0 at monitoring point SZ13, reaching 1.128. Moreover, the R2

values at SZ05, SZ06, and SZ16 fell below 0.8, indicating a weaker fit at these monitoring
points. Notably, the R2 value at SZ16 was a mere 0.268, suggesting an almost complete lack
of fitting ability at this point.

Table 1. MAE and R2 of prediction using LSTM, GRU, and TCN models.

LSTM
MAE LSTM R2 GRU MAE GRU R2 TCN MAE TCN R2

SZ01 0.599 0.927 0.274 0.870 1.784 0.263
SZ02 0.484 0.813 0.345 0.860 1.536 0.034
SZ03 0.601 0.944 0.593 0.961 1.294 0.612
SZ04 0.581 0.963 0.593 0.961 1.510 0.731
SZ05 0.795 0.821 0.456 0.745 1.069 0.267
SZ06 0.522 0.795 0.625 0.585 1.995 −0.934
SZ07 0.395 0.932 0.593 0.961 1.445 0.065
SZ08 0.364 0.903 0.224 0.815 0.680 0.671
SZ09 0.268 0.972 0.193 0.854 1.269 0.296
SZ10 0.718 0.768 0.304 0.871 1.266 0.243
SZ11 0.316 0.903 0.261 0.959 0.855 0.641
SZ12 0.626 0.970 0.298 0.831 3.435 0.117
SZ13 7.305 0.462 1.128 0.988 9.923 0.071
SZ14 0.656 0.916 0.515 0.957 2.072 0.350
SZ15 1.014 0.871 0.264 0.991 2.026 0.613
SZ16 1.975 −0.207 0.824 0.268 6.316 −8.734

Observing the prediction results of the LSTM and GRU models, although not all the
predicted values exactly matched the real levelness, the levelness of the building-steel
platforms at points SZ01, SZ03, SZ04, SZ07, SZ08, SZ09, SZ12, SZ14, and SZ15 showed
a better prediction effect, with similar fluctuation patterns and peaks in the predicted
and actual monitoring values. This further validates the results of the sensitivity analysis
between multiple explanatory variables and multiple observed variables in Section 4.1.

Figure 11 also demonstrates that the GRU model consistently had smaller MAE values,
indicating higher accuracy in predicting the HBM posture. On the other hand, the LSTM
model showcased R2 values closer to 1 across all instances, indicating a better fit to the
HBM posture.

However, monitoring points SZ10, SZ13, and SZ16 exhibited poor predictive per-
formance across all three intelligent-prediction models, indicating a lack of sensitivity to
jacking cylinder data and susceptibility to other influencing factors. The unsatisfactory
prediction outcomes of the TCN model imply an inability to capture the significance of
long-term features, requiring further enhancements such as introducing larger convolution
kernels to capture the long-term trends of HBM postures.

LSTM MAE GRU MAE LSTM R2 GRU R2
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Figure 11. MAE and R2 under LSTM and GRU model prediction.
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5. Discussion

In this research, we focused on utilizing various neural network models, including
LSTM, GRU, and TCN, to predict changes in the postures of the HBM based on historical
data on the levelness of SPs, stroke, and the pressure of climbing jacking cylinders. We
employed a multivariate time series-related model approach to address the challenge
of multiple output prediction. We conducted a thorough analysis by comparing and
evaluating the prediction outcomes of these time series neural network methods. We
selected the optimal solution based on calculating the mean square error, which effectively
reduced model randomness and improved the correlation of levelness at each monitoring
point of the HBM. By training the multivariate time series neural network, we successfully
obtained a model capable of predicting the postures of the HBM. Leveraging the historical
monitored data during the climbing process, our model enabled accurate predictions
of subsequent data. Thus, the necessary adjustments were made to each of the jacking
cylinders, even when the load distribution of the SP remained unknown.

During the climbing of the HBM, it is imperative to minimize the variation in the
SP’s postures. Drawing upon the comprehensive analysis presented earlier, it becomes
clear that the GRU model exhibits superior accuracy in predicting the hand postures of
the HBM. Consequently, the HBM operator can leverage the intelligent-prediction model
with the GRU neural network to anticipate future changes in HBM postures during the
climbing process. Moreover, it enables a continuous adjustment of the HBM’s postures in
response to the predicted outcomes. Figure 12 illustrates the temporal data obtained from
16 levelness sensors during the climbing of the HBM. As the HBM climbs, the readings from
the 16 sensors consistently demonstrate changes in the measured levelness. Furthermore,
the levelness deviations across the 16 positions on the SP undergo dynamic changes in
conjunction with the climbing process.

During the intricate process of climbing the HBM, the stroke of the jacking cylinder
directly controls the HBM’s posture while significantly impacting its overall posture dy-
namics. So, it is clearly suboptimal to rely on adjusting the stroke of the jacking cylinder
to rectify the HBM’s posture. In order to further leverage the proposed model to offer
guidance on the HBM’s climbing state, we engage in a dynamic adjustment of the jacking
pressure values across the jacking cylinders of the various positions. This approach enables
us to dynamically rectify the HBM’s postures, thereby minimizing the levelness devia-
tions among different positions on the SP. Figure 9b showcases the results of a Pearson
correlation analysis conducted between the levelness of the SP and the pressure exerted
by the jacking cylinder. Remarkably, there is always the highest correlation discernible
between the fluctuations observed in the levelness at each position on the SP and the
pressure values of one jacking cylinder. Consequently, when encountering instances where
the levelness at a particular position is suboptimal, we adjust the corresponding jacking
cylinder’s pressure value, enhancing the levelness, diminishing the deviation in levelness
across the SP, and rectifying the HBM’s posture.

In summary, in situations where significant deviations in the HBM’s postures manifest,
we can minimize the levelness deviations on the SP by augmenting the pressure value
of the jacking cylinder, which has a positive correlation with the low-levelness position
point on the SP. This approach allows us to rectify the HBM’s postures and attenuate the
levelness deviations. By harnessing the predictive capabilities of the proposed model,
we can anticipate the forthcoming changes in the HBM’s posture. This integration of
the model into the HBM’s intelligent system empowers the HBM to adjust its climbing
parameters autonomously, ensuring the smooth and secure operation of the HBM. Figure 13
visually illustrates the process of adjusting the hand postures of the HBM during its
climbing. Throughout the actual climbing process, it is imperative to minimize the levelness
deviations among each monitoring position on the SP. Furthermore, it is crucial to maintain
the maximum and minimum values of levelness deviations within a threshold (Td) to
mitigate the risk of the tube structure colliding with the reinforced concrete main structure
of the building. Such collisions can lead to instability in the climbing process, posing a
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potential hazard to the HBM. The proposed model not only accurately predicts the climbing
postures of the HBM but also provides specific adjustment recommendations to ensure the
safe operation of the HBM and mitigate construction risks.
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Figure 12. Use of hydrostatic levelness sensors to monitor the time course of the levelness curves at
different positions of the steel platform during the climbing process.

Figure 13. Schematic diagram of the posture adjustment during HBM climbing process.

6. Conclusions

In this paper, we propose a multivariate time series neural network prediction system
to control the HBM and maintain a smooth posture during construction operations. The sys-
tem utilizes three multivariate time series neural network models: LSTM, GRU, and TCN.
The pressure and stroke of the jacking cylinder serve as inputs, while the monitored val-
ues of sensor levelness at 16 different positions on the SP are used as outputs. The main
objective is to address the issue of unstable posture in the HBM caused by significant
levelness deviations resulting from uneven stacking on the SP during the climbing process.
By predicting future posture changes based on the climb data from the historical working
stage of the HBM, we aim to proactively control the levelness deviations of the SP within a
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threshold value and prevent instability in the HBM’s posture during the climbing process.
The results of the study are as follows:

1. For the same neural network architecture and dataset size, the prediction system
that uses the GRU neural network model does a better job of guessing how the
HBM posture will change while it climbs. Among the multiple levelness sensors
installed on the HBM, only a subset of them demonstrate a strong correlation with the
jacking parameters of the jacking mechanism. By adjusting the pressure value of the
jacking cylinders, the posture of the HBM can be conveniently corrected. Therefore,
we propose employing the GRU neural network-prediction system to anticipate the
posture changes of the HBM. Additionally, by adjusting the jacking cylinder pressure
value, it is possible to maintain levelness within the threshold value;

2. The validation of the measured data demonstrates that the proposed prediction
models can accurately determine the levelness deviations and posture of the HBM’s
steel platform by solely utilizing the working data from the jacking cylinders. This
capability allows for real-time warnings, indicating that these networks can make
significant contributions to the safe and efficient operation of the HBM. Moreover,
this modified method can also be extended to monitor the operational status of other
engineering equipment, such as hydraulic climbing molds, sliding molds, and integral
lifting scaffolds. The widespread adoption and implementation of this method could
improve the construction levelness of high-rise buildings;

3. However, it is important to note that the model was trained and tested solely based on
data from a single HBM, and its applicability to other HBMs or construction platforms
has yet to be verified. Additionally, the model primarily considers the pressure and
stroke of the jacking cylinder as inputs without accounting for the potential influence
of other environmental factors, such as weather conditions. Finally, while the GRU
provided the best prediction in this study, it should not be assumed that the GRU
is the optimal choice in all scenarios. Therefore, future studies should improve the
preprocessing and cleaning of the data and validate the generalization ability of these
models. More characteristic factors should be considered under a wider range of
equipment and conditions for different types of HBM operational data. This approach
will lead to more comprehensive and high-performance predictive models;

4. The developed models offer real-time predictions to site managers and operators,
allowing them to understand the HBM’s status during the climbing process promptly.
This timely understanding enables them to make the necessary adjustments in accor-
dance with HBM management requirements and standard specification terms, thus
ensuring a safer and more efficient climbing process.
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