Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = high-fiber tofu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1345 KiB  
Article
Traditional and Domestic Cooking Dramatically Reduce Estrogenic Isoflavones in Soy Foods
by Souad Bensaada, Gabriele Peruzzi, Laurent Cubizolles, Muriel Denayrolles and Catherine Bennetau-Pelissero
Foods 2024, 13(7), 999; https://doi.org/10.3390/foods13070999 - 25 Mar 2024
Cited by 5 | Viewed by 4455
Abstract
Soybean is a pulse which has considerable nutritional value due to its high protein, fibers and polyunsaturated fatty acid (PUFA) contents. It also contains phytoestrogenic compounds that definitely hinder its recommendation for general consumption. Contrary to ancient times, when soybeans were boiled, modern [...] Read more.
Soybean is a pulse which has considerable nutritional value due to its high protein, fibers and polyunsaturated fatty acid (PUFA) contents. It also contains phytoestrogenic compounds that definitely hinder its recommendation for general consumption. Contrary to ancient times, when soybeans were boiled, modern commercial soy foods can contain up to 150 mg/100g of estrogenic isoflavones. Interestingly, current estimations of isoflavone intake in the literature do not distinguish between the origins of soy food, i.e., whether it is homemade or commercial. As a result, the isoflavone exposure in Asian countries may well be overestimated. This study aims to demonstrate, based on step-by-step monitoring of isoflavones, that traditional and domestic treatments, leveraging isoflavones water-solubility, can indeed significantly reduce their content in soy foods. Indeed, when compared to commercial foods, the isoflavone content was found to be 20, 2.6, 4.5 and 9.8 times lower in “homemade” soy juice, tofu, tempeh and miso, respectively. Additionally, water soaking was found to reduce the isoflavones levels in soy-textured proteins by more than 70%. Hence, this simple process has the potential to help drastically reduce overall xenoestrogens exposure. This study could serve as a basis for establishing the isoflavones Reference Dose and issuing food safety guidelines. Full article
Show Figures

Graphical abstract

13 pages, 2656 KiB  
Article
The Comprehensive Utilization of Bean Dregs in High-Fiber Tofu
by Wenjing Lu, Yue Zhang, Chaogeng Xiao, Di Chen, Qin Ye, Cen Zhang, Xianghe Meng and Shengjian Wang
Foods 2022, 11(10), 1475; https://doi.org/10.3390/foods11101475 - 19 May 2022
Cited by 11 | Viewed by 3579
Abstract
A large quantity of bean dregs is produced by the production of tofu and treated as animal feed or plant fertilizer, which could cause environmental pollution. The purpose of this study was to use commercially available lactone tofu to compare the effects of [...] Read more.
A large quantity of bean dregs is produced by the production of tofu and treated as animal feed or plant fertilizer, which could cause environmental pollution. The purpose of this study was to use commercially available lactone tofu to compare the effects of innovative preparation methods of high-fiber tofu, where the innovative methods used partial de-slagging followed by the addition of soybean residue cellulose to prepare high-fiber tofu. The results showed that there were no significant differences among lactone tofu samples made with 5% cellulose, 10% cellulose, or 15% cellulose and the commercially available lactone tofu during the water-holding capacity and chroma analysis. Texture indices showed that lactone tofu with 10% cellulose was similar to the commercially available lactone tofu in chewiness and hardness, and lactone tofu with 15% cellulose was similar to the commercially available lactone tofu in adhesiveness and chewiness. Magnetic resonance imaging displayed that lactone tofu with 10% cellulose had better water retention and higher moisture content. Gel electron microscopy showed that lactone tofu with 10% cellulose achieved a better gel network, and the bean dreg cellulose had less influence to a certain extent. Volatile organic compound testing by GC-IMS method indicated that the lactone tofu with 10% cellulose had more volatile organic compound content. In conclusion, these results demonstrated that lactone tofu with 10% cellulose had the best market competitiveness in ensuring the quality of high-fiber tofu. Full article
(This article belongs to the Topic Bioactives and Ingredients from Agri-Food Wastes)
Show Figures

Figure 1

17 pages, 2337 KiB  
Article
Solid-State Fermented Okara with Aspergillus spp. Improves Lipid Metabolism and High-Fat Diet Induced Obesity
by Natsumi Ichikawa, Li Shiuan Ng, Saneyuki Makino, Luo Lin Goh, Yun Jia Lim, Ferdinandus, Hiroyuki Sasaki, Shigenobu Shibata and Chi-Lik Ken Lee
Metabolites 2022, 12(3), 198; https://doi.org/10.3390/metabo12030198 - 23 Feb 2022
Cited by 20 | Viewed by 8086
Abstract
Okara is a major by-product of soymilk and tofu production. Despite retaining abundant nutrients after the process, okara is often under-utilized. In this study, solid-state fermentation (SSF) of okara was carried out using a koji starter (containing both Aspergillus oryzae and Aspergillus sojae [...] Read more.
Okara is a major by-product of soymilk and tofu production. Despite retaining abundant nutrients after the process, okara is often under-utilized. In this study, solid-state fermentation (SSF) of okara was carried out using a koji starter (containing both Aspergillus oryzae and Aspergillus sojae) with the intention of releasing its untapped nutrients. Its effects on lipid metabolism in diet-induced obesity (DIO) were observed. The nutritional profile of fermented okara was elucidated using the following parameters: total phenolic content (TPC), pH, protein content, dietary fiber, amino acid content, and free sugar content. In vivo experiments were conducted using high-fat diets supplemented with unfermented okara and fermented okara over three weeks. Supplementation with fermented okara reduced body weight gain, adipose tissue weight, the serum triglyceride profile, and lipid accumulation in the liver, and altered the mRNA expression levels related to lipid metabolism; however, it did not affect pH and short-chain fatty acid (SCFA) production in this study. In conclusion, high-fat diets supplemented using okara fermented with Aspergillus spp. improved the lipid metabolism in mice, due to their high nutritional value, such as TPC, soy protein, and amino acids, and their synergistic effects without altering the gut microbiota. Full article
(This article belongs to the Special Issue Advance in Metabolomics Application for Food Fermentation)
Show Figures

Figure 1

9 pages, 2182 KiB  
Article
Tailoring Physical and Sensory Properties of Tofu by the Addition of Jet-Milled, Superfine, Defatted Soybean Flour
by Ye-Na Kim, Syahrizal Muttakin, Young-Min Jung, Tae-Yeong Heo and Dong-Un Lee
Foods 2019, 8(12), 617; https://doi.org/10.3390/foods8120617 - 25 Nov 2019
Cited by 20 | Viewed by 4337
Abstract
The use of defatted soybean flour (DSF) in food as a source of dietary fiber has been limited due to its rough texture and bitter taste. Our previous work indicates that superfine DSF prepared by jet milling could overcome these problems, as it [...] Read more.
The use of defatted soybean flour (DSF) in food as a source of dietary fiber has been limited due to its rough texture and bitter taste. Our previous work indicates that superfine DSF prepared by jet milling could overcome these problems, as it positively affected physical and sensory properties. Therefore, differently sized DSFs were incorporated in tofu, and their impacts on physical and sensory properties were investigated in this study. Coarse DSF (Dv50 = 341.0 µm), fine DSF (Dv50 = 105.3 µm), and superfine DSF (Dv50 = 5.1 µm) were prepared by conventional sifting and jet milling. Tofu was made with a 5% addition of differently sized DSFs and without DSF (control tofu). The quality of tofu was evaluated by scanning electron microscopy, color measurement, texture profile analysis, and quantitative descriptive analysis. The tofu made with coarse and fine DSF showed negative changes in its physical and organoleptic qualities, such as reduced yields, a less pure color, a harder texture, and a rougher mouthfeel. However, the tofu made with superfine DSF showed only minimal changes in its qualities compared to the control. Therefore, superfine DSF is a promising fiber supplement that does not change the physical and sensory properties in the making of high-quality tofu. Full article
Show Figures

Figure 1

Back to TopTop