Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = high-altitude shallow lake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 27633 KB  
Article
Tracking the Seismic Deformation of Himalayan Glaciers Using Synthetic Aperture Radar Interferometry
by Sandeep Kumar Mondal, Rishikesh Bharti and Kristy F. Tiampo
Remote Sens. 2025, 17(5), 911; https://doi.org/10.3390/rs17050911 - 5 Mar 2025
Cited by 2 | Viewed by 2325
Abstract
The Himalayan belt, formed due to the Cenozoic convergence between the Eurasian and Indian craton, acts as a storehouse of large amounts of strain, resulting in large earthquakes from the Western to the Eastern Himalayas. Glaciers also occur over a major portion of [...] Read more.
The Himalayan belt, formed due to the Cenozoic convergence between the Eurasian and Indian craton, acts as a storehouse of large amounts of strain, resulting in large earthquakes from the Western to the Eastern Himalayas. Glaciers also occur over a major portion of the high-altitude Himalayan region. The impact of earthquakes can be easily studied in the plains and plateaus with the help of well-distributed seismogram networks and these regions’ accessibility is helpful for field- and lab-based studies. However, earthquakes triggered close to high-altitude Himalayan glaciers are tough to investigate for the impact over glaciers and glacial deposits. In this study, we attempt to understand the impact of earthquakes on and around Himalayan glaciers in terms of vertical displacement and coherence change using space-borne synthetic aperture radar (SAR). Eight earthquake events of various magnitudes and hypocenter depths occurring in the vicinity of Himalayan glacial bodies were studied using C-band Sentinel1-A/B SAR data. Differential interferometric SAR (DInSAR) analysis is applied to capture deformation of the glacial surface potentially related to earthquake occurrence. Glacial displacement varies from −38.9 mm to −5.4 mm for the 2020 Tibet earthquake (Mw 5.7) and the 2021 Nepal earthquake (Mw 4.1). However, small glacial and ground patches processed separately for vertical displacements reveal that the glacial mass shows much greater seismic displacement than the ground surface. This indicates the possibility of the presence of potential site-specific seismicity amplification properties within glacial bodies. A reduction in co-seismic coherence around the glaciers is observed in some cases, indicative of possible changes in the glacial moraine deposits and/or vegetation cover. The effect of two different seismic events (the 2020 and 2021 Nepal earthquakes) with different hypocenter depths but with the same magnitude at almost equal distances from the glaciers is assessed; a shallow earthquake is observed to result in a larger impact on glacial bodies in terms of vertical displacement. Earthquakes may induce glacial hazards such as glacial surging, ice avalanches, and the failure of moraine-/ice-dammed glacial lakes. This research may be able to play a possible role in identifying areas at risk and provide valuable insights for the planning and implementation of measures for disaster risk reduction. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

15 pages, 1537 KB  
Article
Potential Submerged Macrophytes to Mitigate Eutrophication in a High-Elevation Tropical Shallow Lake—A Mesocosm Experiment in the Andes
by Karen Portilla, Elizabeth Velarde, Ellen Decaestecker, Franco Teixeira de Mello and Koenraad Muylaert
Water 2023, 15(1), 75; https://doi.org/10.3390/w15010075 - 26 Dec 2022
Cited by 5 | Viewed by 4147
Abstract
Submerged macrophytes promote water clarity in shallow lakes in temperate regions via zooplankton refuge, allelopathy, and nutrient competition with phytoplankton, thereby increasing zooplankton grazing. However, in high-altitude Andean ecosystems, these interactions in shallow lakes have received far less attention. To understand the role [...] Read more.
Submerged macrophytes promote water clarity in shallow lakes in temperate regions via zooplankton refuge, allelopathy, and nutrient competition with phytoplankton, thereby increasing zooplankton grazing. However, in high-altitude Andean ecosystems, these interactions in shallow lakes have received far less attention. To understand the role of submerged plants in a relatively cold ecosystem (typical for the Andean region), two 100 L experiments were conducted in Yahuarcocha Lake, which has a permanent cyanobacterial bloom. In our first experiment, we evaluated the response of the cyanobacteria bloom to different concentrations of Egeria densa (15%, 35%, and 45% PVI). In the second experiment, we investigated the interactions between E. densa (35% PVI), zooplankton, and the small-sized fish Poecilia reticulata as well as their impacts on phytoplankton. We found a strong reduction in cyanobacteria in the presence of E. densa, whereas P. reticulata promoted cyanobacteria dominance and zooplankton had a null effect on phytoplankton. Remarkably, the combination of E. densa, fish, and zooplankton substantially reduced the algae. Our findings showed that the cyanobacteria bloom decreased in the presence of E. densa, thereby increasing the water clarity in the high-elevation eutrophic ecosystem in the Andes. This effect depended on the plant volume inhabited and the small-sized fish biomass. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

14 pages, 4167 KB  
Article
Accumulation of Methylmercury in the High-Altitude Lake Uru Uru (3686 m a.s.l, Bolivia) Controlled by Sediment Efflux and Photodegradation
by Stéphane Guédron, Dario Achá, Sylvain Bouchet, David Point, Emmanuel Tessier, Carlos Heredia, Stéfany Rocha-Lupa, Pablo Fernandez-Saavedra, Marizol Flores, Sarah Bureau, Israel Quino-Lima and David Amouroux
Appl. Sci. 2020, 10(21), 7936; https://doi.org/10.3390/app10217936 - 9 Nov 2020
Cited by 11 | Viewed by 4028
Abstract
In shallow aquatic environments, sediment is a significant source of monomethylmercury (MMHg) for surface water (SW). High-altitude aquatic ecosystems are characterized by extreme hydro-climatic constraints (e.g., low oxygen and high UV radiation). We studied, during two seasons, the diel cycles of MMHg in [...] Read more.
In shallow aquatic environments, sediment is a significant source of monomethylmercury (MMHg) for surface water (SW). High-altitude aquatic ecosystems are characterized by extreme hydro-climatic constraints (e.g., low oxygen and high UV radiation). We studied, during two seasons, the diel cycles of MMHg in SW and sediment porewaters (PW) of Lake Uru Uru (3686 m a.s.l, Bolivia) contaminated by urban and mining activities. Our results show that diel changes in SW MMHg concentrations (up to 1.8 ng L−1) overwhelm seasonal ones, with higher MMHg accumulation during the night-time and the dry season. The calculation of MMHg diffusive fluxes demonstrates that the sediment compartment was the primary source of MMHg to the SW. Most MMHg efflux occurred during the dry season (35.7 ± 17.4 ng m−2 day−1), when the lake was relatively shallow, more eutrophicated, and with the redoxcline located above the sediment–water interface (SWI). Changes in MMHg accumulation in the PWs were attributed to diel redox oscillations around the SWI driving both the bacterial sulfate reduction and bio-methylation. Finally, we highlight that although MMHg loading from the PW to the SW is large, MMHg photodegradation and demethylation by microorganisms control the net MMHg accumulation in the water column. Full article
Show Figures

Graphical abstract

18 pages, 2909 KB  
Article
Algal Bloom Exacerbates Hydrogen Sulfide and Methylmercury Contamination in the Emblematic High-Altitude Lake Titicaca
by Darío Achá, Stephane Guédron, David Amouroux, David Point, Xavier Lazzaro, Pablo Edgar Fernandez and Géraldine Sarret
Geosciences 2018, 8(12), 438; https://doi.org/10.3390/geosciences8120438 - 26 Nov 2018
Cited by 41 | Viewed by 8373
Abstract
Algal blooms occurrence is increasing around the globe. However, algal blooms are uncommon in dominantly oligotrophic high-altitude lakes. Lake Titicaca, the largest freshwater lake in South America, located at 3809 m above the sea level, experienced its first recorded algal bloom covering a [...] Read more.
Algal blooms occurrence is increasing around the globe. However, algal blooms are uncommon in dominantly oligotrophic high-altitude lakes. Lake Titicaca, the largest freshwater lake in South America, located at 3809 m above the sea level, experienced its first recorded algal bloom covering a large fraction of its southern shallow basin in March–April 2015. The dominant algae involved in the bloom was Carteria sp. Water geochemistry changed during the bloom with a simultaneous alkalinization in heterotrophic parts of the lake and acidification in eutrophic shallow areas. A decrease in oxygen saturation (from 105 to 51%), and a dramatic increase in hydrogen sulfide (H2S) concentrations (from <0.02 to up to 155 µg∙L−1) resulted in the massive death of pelagic organisms. Such changes were brought by the exacerbated activity of sulfate-reducing bacteria (SRB) in this sulfate-rich lake. Although levels in total mercury remained stable during the event, MMHg % rose, highlighting higher conservation of produced MMHg in the water. Such an increase on MMHg % has the potential to produce exponential changes on MMHg concentrations at the end food web due to the biomagnification process. Our physicochemical and climatological data suggest that unusually intense rain events released large amounts of nutrients from the watershed and triggered the bloom. The observed bloom offers a hint for possible scenarios for the lake if pollution and climate change continue to follow the same trend. Such a scenario may have significant impacts on the most valuable fish source in the Andean region and the largest freshwater Lake in South America. Furthermore, the event illustrates a possible fate of high altitude environments subjected to eutrophication. Full article
(This article belongs to the Special Issue Mercury Biogeochemical Cycle in A Changing World)
Show Figures

Figure 1

Back to TopTop