Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = high dilution radical polymerization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3965 KB  
Article
The Effect of the Synthetic Procedure of Acrylonitrile–Acrylic Acid Copolymers on Rheological Properties of Solutions and Features of Fiber Spinning
by Ivan Y. Skvortsov, Elena V. Chernikova, Valery G. Kulichikhin, Lydia A. Varfolomeeva, Mikhail S. Kuzin, Roman V. Toms and Nikolay I. Prokopov
Materials 2020, 13(16), 3454; https://doi.org/10.3390/ma13163454 - 5 Aug 2020
Cited by 14 | Viewed by 3147
Abstract
The influence of introducing acrylic acid (AA) into the reaction mixture with acrylonitrile at the synthesis of copolymers by free-radical polymerization (FRP) and radical polymerization with reversible addition–fragmentation chain transfer (RAFT) on the rheological properties of their solutions in dimethyl sulfoxide, as well [...] Read more.
The influence of introducing acrylic acid (AA) into the reaction mixture with acrylonitrile at the synthesis of copolymers by free-radical polymerization (FRP) and radical polymerization with reversible addition–fragmentation chain transfer (RAFT) on the rheological properties of their solutions in dimethyl sulfoxide, as well as on the capability to spin fibers by the mechanotropic method, is analyzed. The influence of AA dosing conditions on the rheological properties of the solutions in the concentration range above the crossover point was not revealed. In the case of RAFT synthesis, the rheological properties differ distinctively in the high concentration region that is expressed by unusual viscoelastic characteristics. Dilute solution viscometry revealed the influence of the comonomer loading order on the interaction intensity of the copolymer macromolecules with a solvent, which is more pronounced for samples synthesized by FRP and can be associated with the copolymers’ molecular structure. Fiber spinning from solutions of polyacrylonitrile and its copolymers (PAN) synthesized by the RAFT method was not able to achieve a high degree of orientation drawing, while for polymers with a wider molecular weight distribution synthesized by FRP, it was possible to realize large stretches, which led to high-quality fibers with strength values up to 640 MPa and elongation at a break of 20%. Full article
(This article belongs to the Special Issue Fiber Spinning: Materials & Techniques)
Show Figures

Graphical abstract

14 pages, 2873 KB  
Article
Covalently Crosslinked Nanogels: An NMR Study of the Effect of Monomer Reactivity on Composition and Structure
by Pengfei Liu, Charles M. Pearce, Rozalia-Maria Anastasiadi, Marina Resmini and Ana M. Castilla
Polymers 2019, 11(2), 353; https://doi.org/10.3390/polym11020353 - 18 Feb 2019
Cited by 25 | Viewed by 6578
Abstract
Covalently crosslinked nanogels are widely explored as drug delivery systems and sensors. Radical polymerization provides a simple, inexpensive, and broadly applicable approach for their preparation, although the random nature of the reaction requires careful study of the final chemical composition. We demonstrate how [...] Read more.
Covalently crosslinked nanogels are widely explored as drug delivery systems and sensors. Radical polymerization provides a simple, inexpensive, and broadly applicable approach for their preparation, although the random nature of the reaction requires careful study of the final chemical composition. We demonstrate how the different reactivities of the monomers influence the total degree of incorporation into the polymer matrix and the role played by the experimental parameters in maximizing polymerization efficiency. Nanogels based on N-isopropylacrylamide, N-n-propylacrylamide, and acrylamide crosslinked with N,N’-methylenebisacrylamide were included in this study, in combination with functional monomers N-acryloyl-l-proline, 2-acrylamido-2-methyl-1-propanesulfonic acid, and 4-vinyl-1H-imidazole. Total monomer concentration and initiator quantities are determining parameters for maximizing monomer conversions and chemical yields. The results show that the introduction of functional monomers, changes in the chemical structure of the polymerizable unit, and the addition of templating molecules can all have an effect on the polymerization kinetics. This can significantly impact the final composition of the matrices and their chemical structure, which in turn influence the morphology and properties of the nanogels. Full article
Show Figures

Graphical abstract

16 pages, 1556 KB  
Article
Green Polymer Chemistry: Investigating the Mechanism of Radical Ring-Opening Redox Polymerization (R3P) of 3,6-Dioxa-1,8-octanedithiol (DODT)
by Emily Q. Rosenthal-Kim and Judit E. Puskas
Molecules 2015, 20(4), 6504-6519; https://doi.org/10.3390/molecules20046504 - 13 Apr 2015
Cited by 16 | Viewed by 8592
Abstract
The mechanism of the new Radical Ring-opening Redox Polymerization (R3P) of 3,6-dioxa-1,8-octanedithiol (DODT) by triethylamine (TEA) and dilute H2O2 was investigated. Scouting studies showed that the formation of high molecular weight polymers required a 1:2 molar ratio of [...] Read more.
The mechanism of the new Radical Ring-opening Redox Polymerization (R3P) of 3,6-dioxa-1,8-octanedithiol (DODT) by triethylamine (TEA) and dilute H2O2 was investigated. Scouting studies showed that the formation of high molecular weight polymers required a 1:2 molar ratio of DODT to TEA and of DODT to H2O2. Further investigation into the chemical composition of the organic and aqueous phases by 1H-NMR spectroscopy and mass spectrometry demonstrated that DODT is ionized by two TEA molecules (one for each thiol group) and thus transferred into the aqueous phase. The organic phase was found to have cyclic disulfide dimers, trimers and tetramers. Dissolving DODT and TEA in water before the addition of H2O2 yielded a polymer with Mn = 55,000 g/mol, in comparison with Mn = 92,000 g/mol when aqueous H2O2 was added to a DODT/TEA mixture. After polymer removal, MALDI-ToF MS analysis of the residual reaction mixtures showed only cyclic oligomers remaining. Below the LCST for TEA in water, 18.7 °C, the system yielded a stable emulsion, and only cyclic oligomers were found. Below DODT/TEA and H2O2 1:2 molar ratio mostly linear oligomers were formed, with <20% cyclic oligomers. The findings support the proposed mechanism of R3P. Full article
(This article belongs to the Special Issue Ring-Opening Polymerization)
Show Figures

Figure 1

Back to TopTop