Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = high Mn steel binder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2333 KiB  
Article
Proof of Concept: The GREENcell—A Lithium Cell with a F-, Ni- and Co-Free Cathode and Stabilized In-Situ LiAl Alloy Anode
by Kathrin Schad, Dominic Welti and Kai Peter Birke
Batteries 2023, 9(9), 453; https://doi.org/10.3390/batteries9090453 - 4 Sep 2023
Viewed by 2229
Abstract
Given the rising upscaling trend in lithium-ion battery (LiB) production, there is a growing emphasis on the environmental and economic impacts alongside the high energy density demands. The cost and environmental impact of battery production primarily arise from the critical elements Ni, Co, [...] Read more.
Given the rising upscaling trend in lithium-ion battery (LiB) production, there is a growing emphasis on the environmental and economic impacts alongside the high energy density demands. The cost and environmental impact of battery production primarily arise from the critical elements Ni, Co, and F. This drives the exploration of Ni-free and Co-free cathode alternatives such as LiMn2O4 (LMO) and LiFePO4 (LFP). However, the absence of Ni and Co results in reduced capacity and insufficient cyclic stability, particularly in the case of LMO due to Mn dissolution. To compensate for both low cathode capacitance and low cycle stability, we propose the GREENcell, a lithium cell combining a F-free polyisobutene (PIB) binder-based LMO cathode with a stabilized in -situ LiAL alloy anode. A LiAl alloy anode with the chemical composition of LiAl already shows a theoretical capacity of 993 Ah·kg−1. Therefore, it promises extraordinarily higher energy densities compared to a commercial graphite anode with a capacity of 372 Ah·kg−1. Following an iterative development process, different optimization strategies, especially those targeting the stability of the Al-based anode, were evaluated. During Al foil selection, foil purity and thickness could be identified as two of the dominant influencing parameters. A pressed-in stainless steel mesh provides both mechanical stability to the anode and facilitates alloy formation by breaking up the Al oxide layer beforehand. Additionally, a binder-stabilized Al oxide or silicate layer is pre-coated on the Al surface, posing as a SEI-precursor and ensuring a uniform liquid electrolyte distribution at the phase boundary. Employing a commercially available Si-containing Al alloy mitigated the mechanical degradation of the anode, yielding a favorable impact on long-term stability. The applicability of the novel optimized GREENcell is demonstrated using laboratory coin cells with LMO and LFP as the cathode. As a result, the functionality of the GREENcell was demonstrated for the first time, and thanks to the anode stabilization strategies, a capacity retention of >70% after 200 was achieved, representing an increase of 32.6% compared to the initial Al foil. Full article
Show Figures

Figure 1

15 pages, 2978 KiB  
Article
Wastewater Treatment Using Alkali-Activated-Based Sorbents Produced from Blast Furnace Slag
by Saverio Latorrata, Riccardo Balzarotti, Maria Isabella Adami, Bianca Marino, Silvia Mostoni, Roberto Scotti, Maurizio Bellotto and Cinzia Cristiani
Appl. Sci. 2021, 11(7), 2985; https://doi.org/10.3390/app11072985 - 26 Mar 2021
Cited by 15 | Viewed by 4069
Abstract
Currently, slags from secondary steel production, foundries, and blast furnaces represent a major environmental problem since they end up mainly in landfills, and their valorization would bring undeniable advantages both to environment and economy. Moreover, the removal of heavy metal ions from mines [...] Read more.
Currently, slags from secondary steel production, foundries, and blast furnaces represent a major environmental problem since they end up mainly in landfills, and their valorization would bring undeniable advantages both to environment and economy. Moreover, the removal of heavy metal ions from mines wastewater is one of the challenges of the last decades, and adsorption has been proposed as one of the most promising techniques for this purpose. In this context, the use of alkali-activated slags as sorbent can be a good opportunity to develop low cost, environmentally friendly, and sustainable materials. Accordingly, wastewater decontamination by adsorption over a porous monolithic bed made of alkali-activated hydraulic binders is proposed. Alkali-activated materials were prepared using slags from the metallurgical industry and reacted with an alkaline component (high alumina calcium aluminate cement, CAC 80) at ambient conditions. The obtained monolithic foams were tested to evaluate the uptake efficiency towards metal capture. Solutions containing Cu(II), Fe(III), Ni(II), Mn(II), and simulating the metal concentrations of a real mine effluent were tested, both in single- and multi-ion solutions. Promising capture efficiency, values of 80–100% and of 98–100% in the case of the single ion and of the multi-ion solutions were obtained, respectively. Full article
Show Figures

Figure 1

13 pages, 3414 KiB  
Article
The Preparation Process, Microstructure and Properties of Cellular TiC-High Mn Steel-Bonded Carbide
by Guoping Li, Haojun Zhou, Hao Yang, Mingchu Huang, Yingbiao Peng and Fenghua Luo
Materials 2020, 13(3), 757; https://doi.org/10.3390/ma13030757 - 7 Feb 2020
Cited by 7 | Viewed by 2434
Abstract
TiC-high Mn steel-bonded carbide with a cellular structure was designed and fabricated by powder metallurgy techniques using coarse and fine TiC particles as the hard phase. This preparation process of the alloy was designed carefully and optimized. The microstructure of the alloy was [...] Read more.
TiC-high Mn steel-bonded carbide with a cellular structure was designed and fabricated by powder metallurgy techniques using coarse and fine TiC particles as the hard phase. This preparation process of the alloy was designed carefully and optimized. The microstructure of the alloy was observed using a scanning electron microscope. The results show that there are two types of microstructures observed in this TiC steel-bonded carbide: the coarse-grained TiC structure and fine-grained TiC structure. The transverse rupture strength and impact toughness of the alloy reach maximum values 2231 MPa and 12.87 J/cm2, respectively, when the starting weight ratio of MP-A (containing coarse TiC particles) to MP-B (containing fine TiC particles) is 60:40. Hence, this study serves as a feasible and economical example to prepare a high-strength and high-toughness TiC-high Mn steel-bonded carbide with little production cost increase. Full article
(This article belongs to the Special Issue High Performance Ceramics)
Show Figures

Figure 1

13 pages, 4905 KiB  
Article
Synthesis and Irreversible Thermochromic Sensor Applications of Manganese Violet
by Duy Khiem Nguyen, Quang-Vu Bach, Jong-Han Lee and In-Tae Kim
Materials 2018, 11(9), 1693; https://doi.org/10.3390/ma11091693 - 12 Sep 2018
Cited by 27 | Viewed by 7109
Abstract
An irreversible thermochromic material based on manganese violet (MnNH4P2O7) is synthesized. The crystal phase, chemical composition, and morphology of the synthesized material are analyzed using X-ray diffraction, scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, and Fourier-transform [...] Read more.
An irreversible thermochromic material based on manganese violet (MnNH4P2O7) is synthesized. The crystal phase, chemical composition, and morphology of the synthesized material are analyzed using X-ray diffraction, scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, and Fourier-transform infrared spectroscopy. The absorption spectra of the synthesized material are obtained using a UV-Vis spectrometer, and the thermochromism exhibited by the powdered samples at high temperatures is also investigated. The as-synthesized manganese violet pigment consists of pure α-MnNH4P2O7 phase. In addition, the synthesized pigment largely consists of hexagonal crystals with a diameter of hundreds of nanometers. On heating, the pigment simultaneously loses H2O and NH3 in two successive steps at approximately 330–434.4 °C and 434.4–527 °C, which correspond to the formation of an intermediate phase and of Mn2P4O12, respectively. An overall mass loss of 14.22% is observed, which is consistent with the expected 13.79%. An irreversible color change from violet to white is observed after exposure of the synthesized manganese violet pigment at 400 °C for 30 min. This is attributed to the oxidation of ammonia to hydroxylamine, which then decomposes to nitrogen and water, or alternatively to the direct oxidation of ammonia to nitrogen. Furthermore, we demonstrate the potential application of synthesized manganese violet in the production of irreversible thermochromic paint by mixing with potassium silicate solution as a binder and deionized water as a solvent at a specific ratio. The thermochromic paint is then applied in fabrication of irreversible thermochromic sensors by coating it onto a steel plate surface. Finally, we show that manganese violet-based irreversible thermochromic sensors are able to detect temperatures around 400 °C by changing color from violet to white/milky. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

Back to TopTop