Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = heterodichogamy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 13560 KiB  
Article
Genome-Wide Characterization of the GRAS Gene Family in Cyclocarya paliurus and Its Involvement in Heterodichogamy
by Qian Wang, Yibo Yang, Yanhao Yu, Di Mei, Xia Mao and Xiangxiang Fu
Agronomy 2024, 14(10), 2397; https://doi.org/10.3390/agronomy14102397 - 17 Oct 2024
Cited by 1 | Viewed by 1088
Abstract
The GRAS gene family, derived from GAI, RGA, and SCR, plays a crucial role in plant growth and development. In the diploid Cyclocarya paliurus (2n = 2x = 32) with heterodichogamous characteristics, 51 CpGRAS genes were identified and phylogenetically classified into 10 subfamilies. [...] Read more.
The GRAS gene family, derived from GAI, RGA, and SCR, plays a crucial role in plant growth and development. In the diploid Cyclocarya paliurus (2n = 2x = 32) with heterodichogamous characteristics, 51 CpGRAS genes were identified and phylogenetically classified into 10 subfamilies. Structural analysis revealed that CpGRAS genes possessed a canonical GRAS domain, but 70% lacked introns. WGD/segmental duplication was the major driver in the expansion of the CpGRAS family. In addition, a Ka/Ks ratio below 1 for these genes implied functional constraints and evolutionary conservation. Transcriptional profiling revealed significant differential expressions of CpGRAS genes between male and female flowers from two mating types, protogyny (PG) and protandry (PA). Notably, members of the DELLA subfamily exhibited significant upregulation in female flowers at the inflorescence elongation (S3) stage. The expression level of CpSCL6-2 in late-flowering samples (PA-F and PG-M) was higher than in early-flowering ones (PA-M and PG-F). Co-expression analysis identified that CpRGL1 and CpGAI-2 of the DELLA subfamily, along with CpSCL6-2, acted as hub genes, implying their crucial roles in floral development and potential involvement in the heterodichogamous flowering mechanism in C. paliurus. These findings broaden our understanding of CpGRAS genes and provide new insights into the molecular basis of heterodichogamy. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

21 pages, 8397 KiB  
Article
Comparative Proteomic Analysis of Floral Buds before and after Opening in Walnut (Juglans regia L.)
by Haoxian Li, Lina Chen, Ruitao Liu, Shangyin Cao and Zhenhua Lu
Int. J. Mol. Sci. 2024, 25(14), 7878; https://doi.org/10.3390/ijms25147878 - 18 Jul 2024
Cited by 3 | Viewed by 1546
Abstract
The walnut (Juglans regia L.) is a typical and an economically important tree species for nut production with heterodichogamy. The absence of female and male flowering periods seriously affects both the pollination and fruit setting rates of walnuts, thereby affecting the yield [...] Read more.
The walnut (Juglans regia L.) is a typical and an economically important tree species for nut production with heterodichogamy. The absence of female and male flowering periods seriously affects both the pollination and fruit setting rates of walnuts, thereby affecting the yield and quality. Therefore, studying the characteristics and processes of flower bud differentiation helps in gaining a deeper understanding of the regularity of the mechanism of heterodichogamy in walnuts. In this study, a total of 3540 proteins were detected in walnut and 885 unique differentially expressed proteins (DEPs) were identified using the isobaric tags for the relative and absolute quantitation (iTRAQ)-labeling method. Among all DEPs, 12 common proteins were detected in all four of the obtained contrasts. GO and KEGG analyses of 12 common DEPs showed that their functions are distributed in the cytoplasm metabolic pathways, photosynthesis, glyoxylate and dicarboxylate metabolism, and the biosynthesis of secondary metabolites, which are involved in energy production and conversion, synthesis, and the breakdown of proteomes. In addition, a function analysis was performed, whereby the DEPs were classified as involved in photosynthesis, morphogenesis, metabolism, or the stress response. A total of eight proteins were identified as associated with the morphogenesis of stamen development, such as stamen-specific protein FIL1-like (XP_018830780.1), putative leucine-rich repeat receptor-like serine/threonine-protein kinase At2g24130 (XP_018822513.1), cytochrome P450 704B1-like isoform X2 (XP_018845266.1), ervatamin-B-like (XP_018824181.1), probable glucan endo-1,3-beta-glucosidase A6 (XP_018844051.1), pathogenesis-related protein 5-like (XP_018835774.1), GDSL esterase/lipase At5g22810-like (XP_018833146.1), and fatty acyl-CoA reductase 2 (XP_018848853.1). Our results predict several crucial proteins and deepen the understanding of the biochemical mechanism that regulates the formation of male and female flower buds in walnuts. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics)
Show Figures

Figure 1

14 pages, 2582 KiB  
Article
Transcriptome Analysis Reveals the Role of GA3 in Regulating the Asynchronism of Floral Bud Differentiation and Development in Heterodichogamous Cyclocarya paliurus (Batal.) Iljinskaja
by Yinquan Qu, Xiaolin Chen, Xia Mao, Peng Huang and Xiangxiang Fu
Int. J. Mol. Sci. 2022, 23(12), 6763; https://doi.org/10.3390/ijms23126763 - 17 Jun 2022
Cited by 13 | Viewed by 2528
Abstract
Cyclocarya paliurus is an important medical plant owing to the diverse bioactive compounds in its leaves. However, the heterodichogamy with female and male functions segregation within protandry (PA) or protogyny (PG) may greatly affect seed quality and its plantations for medicinal use. To [...] Read more.
Cyclocarya paliurus is an important medical plant owing to the diverse bioactive compounds in its leaves. However, the heterodichogamy with female and male functions segregation within protandry (PA) or protogyny (PG) may greatly affect seed quality and its plantations for medicinal use. To speculate on the factor playing the dominant role in regulating heterodichogamy in C. paliurus, based on phenotypic observations, our study performed a multi comparison transcriptome analysis on female and male buds (PG and PA types) using RNA-seq. For the female and male bud comparisons, a total of 6753 differentially expressed genes (DEGs) were detected. In addition, functional analysis revealed that these DEGs were significantly enriched in floral development, hormone, and GA-related pathways. As the dominant hormones responsible for floral differentiation and development, gibberellins (GAs) in floral buds from PG and PA types were quantified using HPLC-MS. Among the tested GAs, GA3 positively regulated the physiological differentiation (S0) and germination (S2) of floral buds. The dynamic changes of GA3 content and floral morphological features were consistent with the expression levels of GA-related genes. Divergences of GA3 contents at S0 triggered the asynchronism of physiological differentiation between male and female buds of intramorphs (PA-M vs. PA-F and PG-F vs. PG-M). A significant difference in GA3 content enlarged this asynchronism at S2. Thus, we speculate that GA3 plays the dominant role in the formation of heterodichogamy in C. paliurus. Meanwhile, the expression patterns of GA-related DEGs, including CPS, KO, GA20ox, GA2OX, GID1, and DELLA genes, which play central roles in regulating flower development, coincided with heterodichogamous characteristics. These results support our speculations well, which should be further confirmed. Full article
(This article belongs to the Special Issue From Functional Genomics to Biotechnology in Ornamental Plant)
Show Figures

Figure 1

14 pages, 3558 KiB  
Article
Genome-Wide Identification MIKC-Type MADS-Box Gene Family and Their Roles during Development of Floral Buds in Wheel Wingnut (Cyclocarya paliurus)
by Yinquan Qu, Weilong Kong, Qian Wang and Xiangxiang Fu
Int. J. Mol. Sci. 2021, 22(18), 10128; https://doi.org/10.3390/ijms221810128 - 19 Sep 2021
Cited by 15 | Viewed by 3398
Abstract
MADS-box transcription factors (TFs) have fundamental roles in regulating floral organ formation and flowering time in flowering plants. In order to understand the function of MIKC-type MADS-box family genes in Cyclocarya paliurus (Batal.) Iljinskaja, we first implemented a genome-wide analysis of MIKC-type MADS-box [...] Read more.
MADS-box transcription factors (TFs) have fundamental roles in regulating floral organ formation and flowering time in flowering plants. In order to understand the function of MIKC-type MADS-box family genes in Cyclocarya paliurus (Batal.) Iljinskaja, we first implemented a genome-wide analysis of MIKC-type MADS-box genes in C. paliurus. Here, the phylogenetic relationships, chromosome location, conserved motif, gene structure, promoter region, and gene expression profile were analyzed. The results showed that 45 MIKC-type MADS-box were divided into 14 subfamilies: BS (3), AGL12 (1), AP3-PI (3), MIKC* (3), AGL15 (3), SVP (5), AGL17 (2), AG (3), TM8 (1), AGL6 (2), SEP (5), AP1-FUL (6), SOC1 (7), and FLC (1). The 43 MIKC-type MADS-box genes were distributed unevenly in 14 chromosomes, but two members were mapped on unanchored scaffolds. Gene structures were varied in the same gene family or subfamily, but conserved motifs shared similar distributions and sequences. The element analysis in promoters’ regions revealed that MIKC-type MADS-box family genes were associated with light, phytohormone, and temperature responsiveness, which may play important roles in floral development and differentiation. The expression profile showed that most MIKC-type MADS-box genes were differentially expressed in six tissues (specifically expressed in floral buds), and the expression patterns were also visibly varied in the same subfamily. CpaF1st24796 and CpaF1st23405, belonging to AP3-PI and SEP subfamilies, exhibited the high expression levels in PA-M and PG-F, respectively, indicating their functions in presenting heterodichogamy. We further verified the MIKC-type MADS-box gene expression levels on the basis of transcriptome and qRT-PCR analysis. This study would provide a theoretical basis for classification, cloning, and regulation of flowering mechanism of MIKC-type MADS-box genes in C. paliurus. Full article
(This article belongs to the Special Issue Light as a Growth and Development Regulator to Control Plant Biology)
Show Figures

Figure 1

17 pages, 3708 KiB  
Article
Morphological Characterization of Flower Buds Development and Related Gene Expression Profiling at Bud Break Stage in Heterodichogamous Cyclocarya paliurus (Batal.) lljinskaja
by Xiaoling Chen, Xia Mao, Peng Huang and Shengzuo Fang
Genes 2019, 10(10), 818; https://doi.org/10.3390/genes10100818 - 17 Oct 2019
Cited by 25 | Viewed by 6383
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja, a unique species growing in southern China, is a multi-function tree species with medicinal, healthcare, material, and ornamental values. So far, sexual reproduction is the main method for extensive cultivation of C. paliurus plantations, but this is limited by [...] Read more.
Cyclocarya paliurus (Batal.) Iljinskaja, a unique species growing in southern China, is a multi-function tree species with medicinal, healthcare, material, and ornamental values. So far, sexual reproduction is the main method for extensive cultivation of C. paliurus plantations, but this is limited by low seed plumpness resulted from the character of heterodichogamy. Phenological observations have revealed the asynchronism of flower development in this species. However, its molecular mechanism remains largely unknown. To reveal molecular mechanism of heterodichogamy in C. paliurus, transcriptome of female (F) and male (M) buds from two mating types (protandry, PA; protogyny, PG) at bud break stage were sequenced using Illumina Hiseq 4000 platform. The expression patterns of both 32 genes related to flowering and 58 differentially expressed transcription factors (DETFs) selected from 6 families were divided four groups (PG-F, PG-M, PA-F, and PA-M) into two categories: first flowers (PG-F and PA-M) and later flowers (PA-F and PG-M). The results indicated that genes related to plant hormones (IAA, ABA, and GA) synthesis and response, glucose metabolism, and transcription factors (especially in MIKC family) played significant roles in regulating asynchronism of male and female flowers in the same mating type. The expression of DETFs showed two patterns. One contained DETFs up-regulated in first flowers in comparison to later flowers, and the other was the reverse. Nine genes related to flowering were selected for qRT-PCR to confirm the accuracy of RNA-seq, and generally, the RPKM values of these genes were consistent with the result of qRT-PCR. The results of this work could improve our understanding in asynchronism of floral development within one mating type in C. paliurus at transcriptional level, as well as lay a foundation for further study in heterodichogamous plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 2296 KiB  
Article
Heterodichogamy, Pollen Viability, and Seed Set in a Population of Polyploidy Cyclocarya Paliurus (Batal) Iljinskaja (Juglandaceae)
by Xia Mao, Xiang-Xiang Fu, Peng Huang, Xiao-Ling Chen and Yin-Quan Qu
Forests 2019, 10(4), 347; https://doi.org/10.3390/f10040347 - 19 Apr 2019
Cited by 21 | Viewed by 3989
Abstract
Research Highlights: Cyclocarya paliurus, native to the subtropical region of China, is a monoecious species with a heterodichogamous mating system. Its flowering phenology and low seed success characteristics differ from other typical heterodichogamous Juglandaceae species. This could be caused by the existence [...] Read more.
Research Highlights: Cyclocarya paliurus, native to the subtropical region of China, is a monoecious species with a heterodichogamous mating system. Its flowering phenology and low seed success characteristics differ from other typical heterodichogamous Juglandaceae species. This could be caused by the existence of polyploidy in the population. Background and Objectives: C. paliurus has been attracting more attention as a result of its medicinal value. To meet the needs for leaf harvest, cultivation expansion is required, but this is limited by a shortage of seeds. This study aims to profile the flowering phenology and the efficacy of pollen dispersal as well as elucidate on the mechanism of low seed success in the population. Materials and Methods: The flowering phenology pattern of C. paliurus was observed in a juvenile plantation containing 835 individuals of 53 families from 8 provenances at the individual (protandry, PA and protogyny, PG) and population levels for 5 consecutive years (2014–2018). Slides with a culture medium of 10% sucrose and 0.01% boric acid were used to estimate pollen density and viability in the population, and seeds were collected from 20 randomly selected PA and PG individuals to assess seed success during 2017–2018. Results: Four flowering phenotypes and strongly skewed ratios of PA/PG and male/female occurred in the juvenile population. Sexual type and ratio changed significantly with the growth of the population over the years, showing an increasing monoecious group (11.1% to 57.2%) and a decreasing unisexual group (33.6% to 16.3%), as well as a tendency for the sexual ratio to move towards equilibrium (5.42:1 to 1.39:1 for PG:PA). Two flowering phases and bimodality in gender were displayed, as in other heterodichogamous species. However, the high overlap of inter-phases and within individuals was quite different from many previous reports. Owing to the low pollen viability of C. paliurus (~30%), low seed success was monitored in the plantation, as well as in the investigated natural populations. Conclusions: Female-bias (PG and F) and a skewed ratio of mating types corresponded to nutrient accumulation in the juvenile population. Heterodichogamy in C. paliurus was verified, but was shown to be different from other documented species in Juglandaceae. The latest finding of major tetraploidy in a natural population could explain the characteristics of the flowering phenology and seed set of C. paliurus and also give rise to more questions to be answered. Full article
Show Figures

Figure 1

Back to TopTop