Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = heterochiasmy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1267 KiB  
Article
Heterochiasmy and Sex Chromosome Evolution in Silene
by Dmitry A. Filatov
Genes 2023, 14(3), 543; https://doi.org/10.3390/genes14030543 - 22 Feb 2023
Cited by 10 | Viewed by 2983
Abstract
The evolution of a non-recombining sex-specific region is a key step in sex chromosome evolution. Suppression of recombination between the (proto-) X- and Y-chromosomes in male meiosis creates a non-recombining Y-linked region (NRY), while the X-chromosome continues to recombine in females. Lack of [...] Read more.
The evolution of a non-recombining sex-specific region is a key step in sex chromosome evolution. Suppression of recombination between the (proto-) X- and Y-chromosomes in male meiosis creates a non-recombining Y-linked region (NRY), while the X-chromosome continues to recombine in females. Lack of recombination in the NRY defines its main properties—genetic degeneration and accumulation of repetitive DNA, making X and Y chromosomes very different from each other. How and why recombination suppression on sex chromosomes evolves remains controversial. A strong difference in recombination rates between the sexes (heterochiasmy) can facilitate or even cause recombination suppression. In the extreme case—complete lack of recombination in the heterogametic sex (achiasmy)—the entire sex-specific chromosome is automatically non-recombining. In this study, I analyse sex-specific recombination rates in a dioecious plant Silene latifolia (Caryophyllaceae), which evolved separate sexes and sex chromosomes ~11 million years ago. I reconstruct high-density RNAseq-based genetic maps including over five thousand genic markers for the two sexes separately. The comparison of the male and female maps reveals only modest heterochiasmy across the genome, with the exception of the sex chromosomes, where recombination is suppressed in males. This indicates that heterochiasmy likely played only a minor, if any, role in NRY evolution in S. latifolia, as recombination suppression is specific to NRY rather than to the entire genome in males. Other mechanisms such as structural rearrangements and/or epigenetic modifications were likely involved, and comparative genome analysis and genetic mapping in multiple Silene species will help to shed light on the mechanism(s) of recombination suppression that led to the evolution of sex chromosomes. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

11 pages, 1280 KiB  
Article
Heterochiasmy and Sexual Dimorphism: The Case of the Barn Swallow (Hirundo rustica, Hirundinidae, Aves)
by Lyubov P. Malinovskaya, Katerina Tishakova, Elena P. Shnaider, Pavel M. Borodin and Anna A. Torgasheva
Genes 2020, 11(10), 1119; https://doi.org/10.3390/genes11101119 - 24 Sep 2020
Cited by 13 | Viewed by 5277
Abstract
Heterochiasmy, a sex-based difference in recombination rate, has been detected in many species of animals and plants. Several hypotheses about evolutionary causes of heterochiasmy were proposed. However, there is a shortage of empirical data. In this paper, we compared recombination related traits in [...] Read more.
Heterochiasmy, a sex-based difference in recombination rate, has been detected in many species of animals and plants. Several hypotheses about evolutionary causes of heterochiasmy were proposed. However, there is a shortage of empirical data. In this paper, we compared recombination related traits in females and males of the barn swallow Hirundo rustica (Linnaeus, 1758), the species under strong sexual selection, with those in the pale martin Riparia diluta (Sharpe and Wyatt, 1893), a related and ecologically similar species with the same karyotype (2N = 78), but without obvious sexual dimorphism. Recombination traits were examined in pachytene chromosome spreads prepared from spermatocytes and oocytes. Synaptonemal complexes and mature recombination nodules were visualized with antibodies to SYCP3 and MLH1 proteins, correspondingly. Recombination rate was significantly higher (p = 0.0001) in barn swallow females (55.6 ± 6.3 recombination nodules per autosomal genome), caused by the higher number of nodules at the macrochromosomes, than in males (49.0 ± 4.5). They also showed more even distribution of recombination nodules along the macrochromosomes. At the same time, in the pale martin, sexual differences in recombination rate and distributions were rather small. We speculate that an elevated recombination rate in the female barn swallows might have evolved as a compensatory reaction to runaway sexual selection in males. Full article
(This article belongs to the Special Issue Chromosome-Centric View of the Genome Organization and Evolution)
Show Figures

Graphical abstract

Back to TopTop