Heterochiasmy and Sex Chromosome Evolution in Silene
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barton, N.H.; Charlesworth, B. Why sex and recombination? Science 1998, 281, 1986–1990. [Google Scholar] [CrossRef] [PubMed]
- Gaut, B.S.; Wright, S.I.; Rizzon, C.; Dvorak, J.; Anderson, L.K. Recombination: An underappreciated factor in the evolution of plant genomes. Nat. Rev. Genet. 2007, 8, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S. Sex. Chromosomes and Sex-Linked Genes; Springer: Berlin, Germany; New York, NY, USA, 1967. [Google Scholar]
- Wright, A.E.; Dean, R.; Zimmer, F.; Mank, J.E. How to make a sex chromosome. Nat. Commun. 2016, 7, 12087. [Google Scholar] [CrossRef]
- Charlesworth, B.; Charlesworth, D. The degeneration of Y chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 355, 1563–1572. [Google Scholar] [CrossRef]
- Bachtrog, D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 2013, 14, 113–124. [Google Scholar] [CrossRef]
- Charlesworth, D. The timing of genetic degeneration of sex chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20200093. [Google Scholar] [CrossRef]
- Bergero, R.; Charlesworth, D. The evolution of restricted recombination in sex chromosomes. Trends Ecol. Evol. 2009, 24, 94–102. [Google Scholar] [CrossRef]
- Charlesworth, D. Evolution of recombination rates between sex chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160456. [Google Scholar] [CrossRef]
- Charlesworth, D. When and how do sex-linked regions become sex chromosomes? Evolution 2021, 75, 569–581. [Google Scholar] [CrossRef]
- Charlesworth, D. Plant contributions to our understanding of sex chromosome evolution. New Phytol. 2015, 208, 52–65. [Google Scholar] [CrossRef]
- Charlesworth, D. Sex chromosome origins and evolution. In Evolutionary Genomics and Proteomics; Pagel, M., Pomiankowski, A., Eds.; Sinauer Associates: Sunderland, UK, 2008; pp. 207–240. [Google Scholar]
- Howell, E.C.; Armstrong, S.J.; Filatov, D.A. Evolution of neo-sex chromosomes in Silene diclinis. Genetics 2009, 182, 1109–1115. [Google Scholar] [CrossRef]
- Bachtrog, D.; Charlesworth, B. Reduced adaptation of a non-recombining neo-Y chromosome. Nature 2002, 416, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Vicoso, B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nat. Ecol. Evol. 2019, 3, 1632–1641. [Google Scholar] [CrossRef]
- Jeffries, D.L.; Lavanchy, G.; Sermier, R.; Sredl, M.J.; Miura, I.; Borzee, A.; Barrow, L.N.; Canestrelli, D.; Crochet, P.A.; Dufresnes, C.; et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat. Commun. 2018, 9, 4088. [Google Scholar] [CrossRef]
- Vicoso, B.; Bachtrog, D. Numerous transitions of sex chromosomes in Diptera. PLoS Biol. 2015, 13, e1002078. [Google Scholar] [CrossRef]
- El Taher, A.; Ronco, F.; Matschiner, M.; Salzburger, W.; Bohne, A. Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. Sci. Adv. 2021, 7, eabe8215. [Google Scholar] [CrossRef]
- Ponnikas, S.; Sigeman, H.; Abbott, J.K.; Hansson, B. Why do sex chromosomes stop recombining? Trends Genet. 2018, 34, 492–503. [Google Scholar] [CrossRef]
- Vicoso, B.; Bachtrog, D. Reversal of an ancient sex chromosome to an autosome in Drosophila. Nature 2013, 499, 332–335. [Google Scholar] [CrossRef]
- Barrett, S.C.H. The evolution of plant reproductive systems: How often are transitions irreversible? Proc. Biol. Sci. 2013, 280, 20130913. [Google Scholar] [CrossRef]
- Charlesworth, D. Young sex chromosomes in plants and animals. New Phytol. 2019, 224, 1095–1107. [Google Scholar] [CrossRef]
- Martin, H.; Carpentier, F.; Gallina, S.; Gode, C.; Schmitt, E.; Muyle, A.; Marais, G.A.B.; Touzet, P. Evolution of young sex chromosomes in two dioecious sister plant species with distinct sex determination systems. Genome Biol. Evol. 2019, 11, 350–361. [Google Scholar] [CrossRef]
- Lahn, B.T.; Page, D.C. Four evolutionary strata on the human X chromosome. Science 1999, 286, 964–967. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, J.; Bachtrog, D.; An, N.; Huang, Q.; Jarvis, E.D.; Gilbert, M.T.P.; Zhang, G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 2014, 346, 1332. [Google Scholar] [CrossRef]
- Bergero, R.; Forrest, A.; Kamau, E.; Charlesworth, D. Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: Evidence from new sex-linked genes. Genetics 2007, 175, 1945–1954. [Google Scholar] [CrossRef]
- Jeffries, D.L.; Gerchen, J.F.; Scharmann, M.; Pannell, J.R. A neutral model for the loss of recombination on sex chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20200096. [Google Scholar] [CrossRef]
- Lenormand, T.; Roze, D. Y recombination arrest and degeneration in the absence of sexual dimorphism. Science 2022, 375, 663–666. [Google Scholar] [CrossRef]
- Rice, W.R. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution 1987, 41, 911–914. [Google Scholar] [CrossRef]
- Kirkpatrick, M.; Guerrero, R.F. Signatures of sex-antagonistic selection on recombining sex chromosomes. Genetics 2014, 197, 531–541. [Google Scholar] [CrossRef]
- Charlesworth, B.; Jordan, C.Y.; Charlesworth, D. The evolutionary dynamics of sexually antagonistic mutations in pseudoautosomal regions of sex chromosomes. Evolution 2014, 68, 1339–1350. [Google Scholar] [CrossRef]
- Charlesworth, D. The guppy sex chromosome system and the sexually antagonistic polymorphism hypothesis for Y chromosome recombination suppression. Genes 2018, 9, 264. [Google Scholar] [CrossRef]
- Bengtsson, B.O.; Goodfellow, P.N. The effect of recombination between the X and Y chromosomes of mammals. Ann. Hum. Genet. 1987, 51, 57–64. [Google Scholar] [CrossRef]
- Ironside, J.E. No amicable divorce? Challenging the notion that sexual antagonism drives sex chromosome evolution. Bioessays 2010, 32, 718–726. [Google Scholar] [CrossRef]
- Olito, C.; Abbott, J.K. The evolution of suppressed recombination between sex chromosomes by chromosomal inversions. bioRxiv 2020. [Google Scholar] [CrossRef]
- Charlesworth, B.; Wall, J.D. Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proc. R. Soc. Lond. B 1999, 266, 51–56. [Google Scholar] [CrossRef]
- Jay, P.; Tezenas, E.; Véber, A.; Giraud, T. Modeling the stepwise extension of recombination suppression on sex chromosomes and other supergenes through deleterious mutation sheltering. BioRxiv 2022. [Google Scholar] [CrossRef]
- Olito, C.; Ponnikas, S.; Hansson, B. Consequences of recessive deleterious genetic variation for the evolution of inversions suppressing recombination between sex chromosomes. Evolution 2022, in press. [Google Scholar] [CrossRef]
- Rifkin, J.L.; Hnatovska, S.; Yuan, M.; Sacchi, B.M.; Choudhury, B.I.; Gong, Y.; Rastas, P.; Barrett, S.C.H.; Wright, S.I. Recombination landscape dimorphism and sex chromosome evolution in the dioecious plant Rumex hastatulus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210226. [Google Scholar] [CrossRef]
- Bergero, R.; Gardner, J.; Bader, B.; Yong, L.; Charlesworth, D. Exaggerated heterochiasmy in a fish with sex-linked male coloration polymorphisms. Proc. Natl. Acad. Sci. USA 2019, 116, 6924–6931. [Google Scholar] [CrossRef]
- Sardell, J.M.; Kirkpatrick, M. Sex differences in the recombination landscape. Am. Nat. 2020, 195, 361–379. [Google Scholar] [CrossRef]
- Giraut, L.; Falque, M.; Drouaud, J.; Pereira, L.; Martin, O.C.; Mezard, C. Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet. 2011, 7, e1002354. [Google Scholar] [CrossRef]
- Lagercrantz, U.; Lydiate, D.J. RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meioses. Genome 1995, 38, 255–264. [Google Scholar] [CrossRef]
- Phillips, D.; Jenkins, G.; Macaulay, M.; Nibau, C.; Wnetrzak, J.; Fallding, D.; Colas, I.; Oakey, H.; Waugh, R.; Ramsay, L. The effect of temperature on the male and female recombination landscape of barley. New Phytol. 2015, 208, 421–429. [Google Scholar] [CrossRef]
- Krasovec, M.; Chester, M.; Ridout, K.; Filatov, D.A. The mutation rate and the age of the sex chromosomes in Silene latifolia. Curr. Biol. 2018, 28, 1832–1838. [Google Scholar] [CrossRef]
- Blackburn, K.B. Sex chromosomes in plants. Nature 1923, 112, 687–688. [Google Scholar] [CrossRef]
- Warmke, H.E. Sex determination and sex balance in Melandrium. Am. J. Bot. 1946, 33, 648–660. [Google Scholar] [CrossRef]
- Westergaard, M. Aberrant Y chromosomes and sex expression in Melandrium album. Hereditas 1946, 32, 419–443. [Google Scholar] [CrossRef]
- Armstrong, S.J.; Filatov, D.A. A cytogenetic view of sex chromosome evolution in plants. Cytogenet. Genome Res. 2008, 120, 241–246. [Google Scholar] [CrossRef]
- Liu, Z.; Moore, P.H.; Ma, H.; Ackerman, C.M.; Ragiba, M.; Yu, Q.; Pearl, H.M.; Kim, M.S.; Charlton, J.W.; Stiles, J.I.; et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 2004, 427, 348–352. [Google Scholar] [CrossRef]
- Akagi, T.; Henry, I.M.; Tao, R.; Comai, L. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 2014, 346, 646–650. [Google Scholar] [CrossRef]
- Akagi, T.; Pilkington, S.M.; Varkonyi-Gasic, E.; Henry, I.M.; Sugano, S.S.; Sonoda, M.; Firl, A.; McNeilage, M.A.; Douglas, M.J.; Wang, T.; et al. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat. Plants 2019, 5, 801–809. [Google Scholar] [CrossRef]
- Harkess, A.; Huang, K.; van der Hulst, R.; Tissen, B.; Caplan, J.L.; Koppula, A.; Batish, M.; Meyers, B.C.; Leebens-Mack, J. Sex determination by two Y-linked genes in garden asparagus. Plant Cell 2020, 32, 1790–1796. [Google Scholar] [CrossRef]
- Gong, W.; Filatov, D.A. Evolution of the sex-determining region in Ginkgo biloba. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210229. [Google Scholar] [CrossRef]
- Veltsos, P.; Ridout, K.E.; Toups, M.A.; Gonzalez-Martinez, S.C.; Muyle, A.; Emery, O.; Rastas, P.; Hudzieczek, V.; Hobza, R.; Vyskot, B.; et al. Early sex-chromosome evolution in the diploid dioecious plant Mercurialis annua. Genetics 2019, 212, 815–835. [Google Scholar] [CrossRef]
- Oxelman, B.; Lidén, M. Generic boundaries in the tribe Sileneae (Caryophyllaceae) as inferred from nuclear rDNA sequences. Taxon 1995, 44, 525–542. [Google Scholar] [CrossRef]
- Casimiro-Soriguer, I.; Buide, M.L.; Narbona, E. Diversity of sexual systems within different lineages of the genus Silene. AoB Plants 2015, 7, plv037. [Google Scholar] [CrossRef]
- Marais, G.A.B.; Forrest, A.; Kamau, E.; Kafer, J.; Daubin, V.; Charlesworth, D. Multiple nuclear gene phylogenetic analysis of the evolution of dioecy and sex chromosomes in the genus Silene. PLoS ONE 2011, 6, e21915. [Google Scholar] [CrossRef]
- Desfeux, C.; Maurice, S.; Henry, J.P.; Lejeune, B.; Gouyon, P.H. Evolution of reproductive systems in the genus Silene. Proc. R. Soc. Lond. Ser. B 1996, 263, 409–414. [Google Scholar]
- Filatov, D.A. Evolutionary history of Silene latifolia sex chromosomes revealed by genetic mapping of four genes. Genetics 2005, 170, 975–979. [Google Scholar] [CrossRef]
- Kazama, Y.; Ishii, K.; Aonuma, W.; Ikeda, T.; Kawamoto, H.; Koizumi, A.; Filatov, D.A.; Chibalina, M.; Bergero, R.; Charlesworth, D.; et al. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome. Sci. Rep. 2016, 6, 18917. [Google Scholar] [CrossRef]
- Kazama, Y.; Kitoh, M.; Kobayashi, T.; Ishii, K.; Krasovec, M.; Yasui, Y.; Abe, T.; Kawano, S.; Filatov, D.A. A CLAVATA3-like gene acts as a gynoecium suppression function in White campion. Mol. Biol. Evol. 2022, 39, msac195. [Google Scholar] [CrossRef]
- Papadopulos, A.S.; Chester, M.; Ridout, K.; Filatov, D.A. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc. Natl. Acad. Sci. USA 2015, 112, 13021–13026. [Google Scholar] [CrossRef]
- Chibalina, M.V.; Filatov, D.A. Plant Y chromosome degeneration is retarded by haploid purifying selection. Curr. Biol. 2011, 21, 1475–1479. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Subgroup, G.P.D.P. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Rastas, P. Lep-MAP3: Robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics 2017, 33, 3726–3732. [Google Scholar] [CrossRef]
- Bergero, R.; Qiu, S.; Charlesworth, D. Gene loss from a plant sex chromosome system. Curr. Biol. 2015, 25, 1234–1240. [Google Scholar] [CrossRef]
- Bergero, R.; Qiu, S.; Forrest, A.; Borthwick, H.; Charlesworth, D. Expansion of the pseudo-autosomal region and ongoing recombination suppression in the Silene latifolia sex chromosomes. Genetics 2013, 194, 673–686. [Google Scholar] [CrossRef]
- Kim, Y.; Stephan, W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 2002, 160, 765–777. [Google Scholar] [CrossRef]
- Baack, E.J.; Rieseberg, L.H. A genomic view of introgression and hybrid speciation. Curr. Opin. Genet. Dev. 2007, 17, 513–518. [Google Scholar] [CrossRef]
- Turner, T.L.; Hahn, M.W.; Nuzhdin, S.V. Genomic islands of speciation in Anopheles gambiae. PLoS Biol. 2005, 3, e285. [Google Scholar] [CrossRef]
- Filatov, D.A. Recent expansion of the non-recombining sex-linked region on Silene latifolia sex chromosomes. J. Evol. Biol. 2022, 35, 1696–1708. [Google Scholar] [CrossRef]
- Guirao-Rico, S.; Sanchez-Gracia, A.; Charlesworth, D. Sequence diversity patterns suggesting balancing selection in partially sex-linked genes of the plant Silene latifolia are not generated by demographic history or gene flow. Mol. Ecol. 2017, 26, 1357–1370. [Google Scholar] [CrossRef]
- Hu, X.S.; Filatov, D.A. The large-X effect in plants: Increased species divergence and reduced gene flow on the Silene X-chromosome. Mol. Ecol. 2016, 25, 2609–2619. [Google Scholar] [CrossRef]
- Liu, X.; Glemin, S.; Karrenberg, S. Evolution of putative barrier loci at an intermediate stage of speciation with gene flow in campions (Silene). Mol. Ecol. 2020, 29, 3511–3525. [Google Scholar] [CrossRef]
- Bernasconi, G.; Antonovics, J.; Biere, A.; Charlesworth, D.; Delph, L.F.; Filatov, D.; Giraud, T.; Hood, M.E.; Marais, G.A.; McCauley, D.; et al. Silene as a model system in ecology and evolution. Heredity 2009, 103, 5–14. [Google Scholar] [CrossRef]
- Raudsepp, T.; Chowdhary, B.P. The eutherian pseudoautosomal region. Cytogenet. Genome Res. 2015, 147, 81–94. [Google Scholar] [CrossRef]
- Hinch, A.G.; Altemose, N.; Noor, N.; Donnelly, P.; Myers, S.R. Recombination in the human pseudoautosomal region PAR1. PLoS Genet. 2014, 10, e1004503. [Google Scholar] [CrossRef]
- Otto, S.P.; Pannell, J.R.; Peichel, C.L.; Ashman, T.L.; Charlesworth, D.; Chippindale, A.K.; Delph, L.F.; Guerrero, R.F.; Scarpino, S.V.; McAllister, B.F. About PAR: The distinct evolutionary dynamics of the pseudoautosomal region. Trends Genet. 2011, 27, 358–367. [Google Scholar] [CrossRef]
- Brazier, T.; Glemin, S. Diversity and determinants of recombination landscapes in flowering plants. PLoS Genet. 2022, 18, e1010141. [Google Scholar] [CrossRef]
- Haenel, Q.; Laurentino, T.G.; Roesti, M.; Berner, D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol. Ecol. 2018, 27, 2477–2497. [Google Scholar] [CrossRef]
- Otto, S.P.; Payseur, B.A. Crossover interference: Shedding light on the evolution of recombination. Annu. Rev. Genet. 2019, 53, 19–44. [Google Scholar] [CrossRef]



| Female Map | Male Map | Sex-Average Map | ||||
|---|---|---|---|---|---|---|
| LGs | Genes | Length | Genes | Length | Genes | Length |
| LG1 | 385 | 94.61 | 373 | 82.36 | 219 | 92.29 |
| LG2 | 416 | 80.64 | 432 | 85.05 | 207 | 91.24 |
| LG3 | 428 | 73.05 | 426 | 96.33 | 185 | 99.94 |
| LG4 | 488 | 77.48 | 507 | 80.73 | 163 | 81.35 |
| LG5 | 332 | 51.64 | 339 | 73.05 | 165 | 68.70 |
| LG6 | 479 | 75.86 | 407 | 103.64 | 169 | 75.71 |
| LG7 | 218 | 87.71 | 204 | 106.53 | 152 | 86.93 |
| LG8 | 469 | 71.17 | 413 | 71.42 | 142 | 79.61 |
| LG9 | 410 | 51.07 | 402 | 59.16 | 143 | 53.95 |
| LG10 | 673 | 88.41 | 659 | 80.48 | 134 | 98.14 |
| LG11 | 477 | 91.27 | 505 | 116.59 | 108 | 67.97 |
| X | 872 | 85.35 | 868 | 49.11 | 327 | 121.25 |
| All | 5647 | 928.26 | 5535 | 1004.45 | 2114 | 1017.08 |
| Gene Name | S. lat. (This Study) | S. lat. Sex-Avrg. Maps | S. vulgaris LG12 | |||||
|---|---|---|---|---|---|---|---|---|
| This Study | [69,70] | Female | Male | [63] | [69] | [70] | [69] | [70] |
| Contig4232 | E707 | 85.348 | 49.106 | 4.26 | 0.2 | 0 | 32.1 | 29.7 |
| Contig18305 | E378 | 82.113 | 49.106 | 0 | 0.3 | 28.8 | 26.9 | |
| Contig13157 | E758 | 82.113 | 49.106 | 13.36 | 10.4 | 45.7 | ||
| Contig8519 | SlX4 | 82.113 | 49.106 | 14.49 | 5.4 | |||
| Contig9453 | E750 | 82.113 | 49.106 | 13.74 | 10 | 10 | 31.5 | |
| Contig842 | SlX7 | 80.483 | 49.106 | 18.22 | 7.8 | 4.8 | 41.5 | 40.1 |
| Contig4853 | E766 | 70.678 | 49.106 | 35.7 | 18.1 | 38.4 | ||
| Contig1807 | DD44 | 62.834 | 49.106 | 23.5 | 24.5 | 36.8 | 37.4 | |
| Contig4971 | E330 | 56.951 | 49.106 | 46.14 | 39.1 | |||
| Contig2851 | E754 | 56.951 | 49.106 | 42.92 | 25.9 | 37.1 | ||
| Contig8805 | SlXcyp | 49.106 | 49.106 | 52.55 | 41.2 | 46.8 | 47.9 | 47.5 |
| Contig4251 | E702 | 49.106 | 49.106 | 47.3 | 40.9 | |||
| Contig3001 | E777 | 39.221 | 49.106 | 60.88 | 46 | |||
| Contig1564 | E817 | 39.221 | 49.106 | 62.69 | 40.9 | 51.8 | ||
| Contig9553 | E784 | 39.221 | 49.106 | 62.69 | 50 | |||
| Contig255 | E757 | 39.221 | 49.106 | 62.72 | 48.4 | 52.4 | 18.7 | 17.6 |
| Contig9591 | E799 | 39.221 | 49.106 | 48.9 | 55.2 | 24.7 | 23.6 | |
| Contig8488 | E780 | 39.221 | 49.106 | 62.69 | 49.2 | 55.9 | 14.8 | 12.4 |
| Contig4305 | E316 | 39.221 | 49.106 | 56 | ||||
| Contig18190 | E523 | 39.221 | 49.106 | 56 | ||||
| Contig9077 | E247 | 39.221 | 49.106 | 57.3 | ||||
| Contig17205 | E219 | 27.455 | 29.496 | 84 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filatov, D.A. Heterochiasmy and Sex Chromosome Evolution in Silene. Genes 2023, 14, 543. https://doi.org/10.3390/genes14030543
Filatov DA. Heterochiasmy and Sex Chromosome Evolution in Silene. Genes. 2023; 14(3):543. https://doi.org/10.3390/genes14030543
Chicago/Turabian StyleFilatov, Dmitry A. 2023. "Heterochiasmy and Sex Chromosome Evolution in Silene" Genes 14, no. 3: 543. https://doi.org/10.3390/genes14030543
APA StyleFilatov, D. A. (2023). Heterochiasmy and Sex Chromosome Evolution in Silene. Genes, 14(3), 543. https://doi.org/10.3390/genes14030543
