Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = hentriacontanone-16

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4389 KiB  
Article
Gas Chromatography–Mass Spectrometry Metabolite Analysis Combined with Transcriptomics Reveals Genes Involved in Wax Biosynthesis in Allium fistulosum L.
by Jiayi Xing, Huanhuan Xu, Mingzhao Zhu, Yuchen Zhang, Mifeng Bai, Xuyang Zhou, Huiying Liu and Yongqin Wang
Int. J. Mol. Sci. 2024, 25(11), 6106; https://doi.org/10.3390/ijms25116106 - 1 Jun 2024
Cited by 1 | Viewed by 1721
Abstract
Cuticular waxes are essential for protecting plants from various environmental stresses. Allium fistulosum serves as an excellent model for investigating the regulatory mechanisms underlying cuticular wax synthesis with notable epidermal wax characteristics. A combination of gas chromatography–mass spectrometry (GC–MS) metabolite analysis and transcriptomics [...] Read more.
Cuticular waxes are essential for protecting plants from various environmental stresses. Allium fistulosum serves as an excellent model for investigating the regulatory mechanisms underlying cuticular wax synthesis with notable epidermal wax characteristics. A combination of gas chromatography–mass spectrometry (GC–MS) metabolite analysis and transcriptomics was used to investigate variations in metabolites and gene expression patterns between the wild type (WT) and glossy mutant type (gl2) of A. fistulosum. The WT surface had a large number of acicular and lamellar waxy crystals, whereas the leaf surface of gl2 was essentially devoid of waxy crystals. And the results revealed a significant decrease in the content of 16-hentriacontanone, the principal component of cuticular wax, in the gl2 mutant. Transcriptomic analysis revealed 3084 differentially expressed genes (DEGs) between WT and gl2. Moreover, we identified 12 genes related to fatty acid or wax synthesis. Among these, 10 DEGs were associated with positive regulation of wax synthesis, whereas 2 genes exhibited negative regulatory functions. Furthermore, two of these genes were identified as key regulators through weighted gene co-expression network analysis. Notably, the promoter region of AfisC5G01838 (AfCER1-LIKE1) exhibited a 258-bp insertion upstream of the coding region in gl2 and decreased the transcription of the AfCER1-LIKE1 gene. This study provided insights into the molecular mechanisms governing cuticular wax synthesis in A. fistulosum, laying the foundation for future breeding strategies. Full article
(This article belongs to the Special Issue Molecular and Metabolic Regulation of Plant Secondary Metabolism)
Show Figures

Figure 1

20 pages, 10482 KiB  
Article
Anxiolytic-like Effects and Quantitative EEG Profile of Palmitone Induces Responses Like Buspirone Rather Than Diazepam as Clinical Drugs
by Daniela Onofre-Campos, María Eva González-Trujano, Gabriel Fernando Moreno-Pérez, Fernando Narváez-González, José David González-Gómez, Benjamín Villasana-Salazar and David Martínez-Vargas
Molecules 2023, 28(9), 3680; https://doi.org/10.3390/molecules28093680 - 24 Apr 2023
Cited by 6 | Viewed by 2909
Abstract
Anxiety is a mental disorder with a growing worldwide incidence due to the SARS-CoV-2 virus pandemic. Pharmacological therapy includes drugs such as benzodiazepines (BDZs) or azapirones like buspirone (BUSP) or analogs, which unfortunately produce severe adverse effects or no immediate response, respectively. Medicinal [...] Read more.
Anxiety is a mental disorder with a growing worldwide incidence due to the SARS-CoV-2 virus pandemic. Pharmacological therapy includes drugs such as benzodiazepines (BDZs) or azapirones like buspirone (BUSP) or analogs, which unfortunately produce severe adverse effects or no immediate response, respectively. Medicinal plants or their bioactive metabolites are a shared global alternative to treat anxiety. Palmitone is one active compound isolated from Annona species due to its tranquilizing activity. However, its influence on neural activity and possible mechanism of action are unknown. In this study, an electroencephalographic (EEG) spectral power analysis was used to corroborate its depressant activity in comparison with the anxiolytic-like effects of reference drugs such as diazepam (DZP, 1 mg/kg) and BUSP (4 mg/kg) or 8-OH-DPAT (1 mg/kg), alone or in the presence of the GABAA (picrotoxin, PTX, 1 mg/kg) or serotonin 5-HT1A receptor antagonists (WAY100634, WAY, 1 mg/kg). The anxiolytic-like activity was assayed using the behavioral response of mice employing open-field, hole-board, and plus-maze tests. EEG activity was registered in both the frontal and parietal cortex, performing a 10 min baseline and 30 min recording after the treatments. As a result, anxiety-like behavior was significantly decreased in mice administered with palmitone, DZP, BUSP, or 8-OH-DPAT. The effect of palmitone was equivalent to that produced by 5-HT1A receptor agonists but 50% less effective than DZP. The presence of PTX and WAY prevented the anxiolytic-like response of DZP and 8-OH-DPAT, respectively. Whereas only the antagonist of the 5-HT1A receptor (WAY) inhibited the palmitone effects. Palmitone and BUSP exhibited similar changes in the relative power bands after the spectral power analysis. This response was different to the changes induced by DZP. In conclusion, brain electrical activity was associated with the anxiolytic-like effects of palmitone implying a serotoninergic rather than a GABAergic mechanism of action. Full article
(This article belongs to the Special Issue Bioactivity and Analysis of Natural Products in Plants)
Show Figures

Figure 1

17 pages, 2670 KiB  
Article
Reflectance Spectroscopy for Non-Destructive Measurement and Genetic Analysis of Amounts and Types of Epicuticular Waxes on Onion Leaves
by Eduardo D. Munaiz, Philip A. Townsend and Michael J. Havey
Molecules 2020, 25(15), 3454; https://doi.org/10.3390/molecules25153454 - 29 Jul 2020
Cited by 7 | Viewed by 3299
Abstract
Epicuticular waxes on the surface of plant leaves are important for the tolerance to abiotic stresses and plant–parasite interactions. In the onion (Allium cepa L.), the variation for the amounts and types of epicuticular waxes is significantly associated with less feeding damage [...] Read more.
Epicuticular waxes on the surface of plant leaves are important for the tolerance to abiotic stresses and plant–parasite interactions. In the onion (Allium cepa L.), the variation for the amounts and types of epicuticular waxes is significantly associated with less feeding damage by the insect Thrips tabaci (thrips). Epicuticular wax profiles are measured using used gas chromatography mass spectrometry (GCMS), which is a labor intensive and relatively expensive approach. Biochemical spectroscopy is a non-destructive tool for measurement and analysis of physiological and chemical features of plants. This study used GCMS and full-range biochemical spectroscopy to characterize epicuticular waxes on seven onion accessions with visually glossy (low wax), semi-glossy (intermediate wax), or waxy (copious wax) foliage, as well as a segregating family from the cross of glossy and waxy onions. In agreement with previous studies, GCMS revealed that the three main waxes on the leaves of a wild type waxy onion were the ketone hentriacontanone-16 (H16) and fatty alcohols octacosanol-1 (Oct) and triacontanol-1 (Tri). The glossy cultivar “Odourless Greenleaf” had a unique phenotype with essentially no H16 and Tri and higher amounts of Oct and the fatty alcohol hexacosanol-1 (Hex). Hyperspectral reflectance profiles were measured on leaves of the onion accessions and segregating family, and partial least-squares regression (PLSR) was utilized to generate a spectral coefficient for every wavelength and prediction models for the amounts of the three major wax components. PLSR predictions were robust with independent validation coefficients of determination at 0.72, 0.70, and 0.42 for H16, Oct, and Tri, respectively. The predicted amounts of H16, Oct, and Tri are the result of an additive effect of multiple spectral features of different intensities. The variation of reflectance for H16, Oct, and Tri revealed unique spectral features at 2259 nm, 645 nm, and 730 nm, respectively. Reflectance spectroscopy successfully revealed a major quantitative trait locus (QTL) for amounts of H16, Oct, and Tri in the segregating family, agreeing with previous genetic studies. This study demonstrates that hyperspectral signatures can be used for non-destructive measurement of major waxes on onion leaves as a basis for rapid plant assessment in support of developing thrips-resistant onions. Full article
(This article belongs to the Special Issue Alliums: Traditional Uses, Phytochemistry and Biological Activities)
Show Figures

Figure 1

Back to TopTop