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Abstract: Epicuticular waxes on the surface of plant leaves are important for the tolerance to abiotic
stresses and plant–parasite interactions. In the onion (Allium cepa L.), the variation for the amounts
and types of epicuticular waxes is significantly associated with less feeding damage by the insect
Thrips tabaci (thrips). Epicuticular wax profiles are measured using used gas chromatography mass
spectrometry (GCMS), which is a labor intensive and relatively expensive approach. Biochemical
spectroscopy is a non-destructive tool for measurement and analysis of physiological and chemical
features of plants. This study used GCMS and full-range biochemical spectroscopy to characterize
epicuticular waxes on seven onion accessions with visually glossy (low wax), semi-glossy (intermediate
wax), or waxy (copious wax) foliage, as well as a segregating family from the cross of glossy and waxy
onions. In agreement with previous studies, GCMS revealed that the three main waxes on the leaves
of a wild type waxy onion were the ketone hentriacontanone-16 (H16) and fatty alcohols octacosanol-1
(Oct) and triacontanol-1 (Tri). The glossy cultivar “Odourless Greenleaf” had a unique phenotype
with essentially no H16 and Tri and higher amounts of Oct and the fatty alcohol hexacosanol-1 (Hex).
Hyperspectral reflectance profiles were measured on leaves of the onion accessions and segregating
family, and partial least-squares regression (PLSR) was utilized to generate a spectral coefficient
for every wavelength and prediction models for the amounts of the three major wax components.
PLSR predictions were robust with independent validation coefficients of determination at 0.72,
0.70, and 0.42 for H16, Oct, and Tri, respectively. The predicted amounts of H16, Oct, and Tri are
the result of an additive effect of multiple spectral features of different intensities. The variation of
reflectance for H16, Oct, and Tri revealed unique spectral features at 2259 nm, 645 nm, and 730 nm,
respectively. Reflectance spectroscopy successfully revealed a major quantitative trait locus (QTL)
for amounts of H16, Oct, and Tri in the segregating family, agreeing with previous genetic studies.
This study demonstrates that hyperspectral signatures can be used for non-destructive measurement
of major waxes on onion leaves as a basis for rapid plant assessment in support of developing
thrips-resistant onions.
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hentriacontanone-16; fatty alcohol

Molecules 2020, 25, 3454; doi:10.3390/molecules25153454 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0001-9569-919X
http://dx.doi.org/10.3390/molecules25153454
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/25/15/3454?type=check_update&version=2


Molecules 2020, 25, 3454 2 of 16

1. Introduction

Foliar spectroscopy uses reflectance or absorption features associated with molecular bonds to
both rapidly and non-destructively estimate amounts of specific chemicals in living plant tissue [1–4].
Reflectance spectroscopy, also known as hyperspectral sensing, consists of continuous measurements
across a broad spectral range, e.g., every 3 nm in the UV/visible to near-infrared (VNIR, 350–1000
nm) or to shortwave infrared (VSWIR, 350–2500 nm). Spectroscopy has been successfully used to
estimate physiological and biochemical features of plants. Chlorophyll [3,5,6] and carotenoids [7,8]
have received the greatest attention because of their importance in plant metabolism and distinctive
absorption features. Spectroscopy on green leaves has also been used to measure nitrogen concentration
in tissues from a range of crops [9–11], as well as physiological parameters such as rates of
ribulose-1,5-bisphosphate-carboxylation as an estimate of photosynthetic capacity [12] and other
constituents such as phenolics that are important for plant defense [1,13–15]. Hyperspectral data have
been utilized to differentiate the reflectance fingerprints of susceptible versus resistant phenotypes for
the pathogen Cercospora beticola in sugar beet [16], damage by Thrips tabaci L. (thrips) on cabbage [17–19],
and numbers of microsclerotia of the fungus Macrophomina phaseolina (Tassi) Goid on soybean [18],
supporting spectroscopy as a selection tool for plant breeding.

To our knowledge, hyperspectral data have not been used to estimate epicuticular wax components
important for insect interactions, although it is well documented that epicuticular waxes influence
reflectance spectra [20]. Epicuticular waxes are hydrophobic organic molecules that accumulate on the
surface of plant leaves and stems. Natural variation exists for wax components among plants [21,22].
In Arabidopsis thaliana L., wax composition is predominantly comprised of alkanes, ketones, and
secondary alcohols [23]. In leek (Allium ampeloprasum L.), leaf waxes are fatty acids, ketones, alkanes,
and aldehydes with the ketone hentriacontanone-16 (H16) as the most prevalent wax [24]. In onion
(Allium cepa L.), the main epicuticular waxes are a ketone, fatty alcohols, and alkanes [25,26]. Onion
plants vary for amounts of epicuticular waxes and are visually classified as glossy (relatively low
wax), semi-glossy (intermediate amount of wax), or wild-type waxy (copious wax) [25–28]. Glossy
and semi-glossy onions experience significantly less feeding damage from thrips relative to waxy
onions [25,26,29–31]. Previous studies used GCMS and revealed that the amounts of the three main
waxes on onion leaves (the ketone hentriacontanone-16 (H16) and fatty alcohols octacosanol-1 (Oct)
and triacontanol-1 (Tri)) are significantly higher on the foliage of waxy than glossy or semi-glossy
phenotypes. Munaiz et al. [26] showed that semi-glossy onions can possess as much total wax as
waxy phenotypes due to relative proportions of individual waxes, and these plants suffer less feeding
damage from thrips.

GCMS is a relatively labor intensive and expensive approach to measure leaf waxes. VSWIR
spectroscopy is a powerful non-destructive approach that may be useful for leaf wax measurements.
To our knowledge reflectance spectroscopy has not been used for genetic analysis in agricultural
crops, neither for characterization of very long chain derived fatty alcohols as epicuticular waxes.
Spectroscopy was used for quantitative analysis in the forest tree Populus [32] to identify candidate
locus controlling the production of salicinoid phenolic glycosides. Spectroscopy was also used in
poplar for secondary metabolites identification [33]. In this study, we measured amounts and types
of epicuticular waxes on leaves of phenotypically diverse onions using GCMS and spectroscopy to
determine the spectral characteristics of leaf waxes and assess the efficacy of spectroscopy as a breeding
tool to develop thrips-resistant onions.

2. Results and Discussion

Accessions were selected based on visually glossy, semi glossy, or waxy phenotypes and showed
significant differences for amounts of individual waxes (Tables 1–3). These accessions also provided
optimal spectroscopic phenotypic ranges for H16, Oct, and Tri between 0–2.2, 0–0.77, and 0–0.41,
respectively (Table 4).
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2.1. Phenotypic Variation for the Three Major Epicuticular Waxes

H16 is the most abundant epicuticular wax on the leaves of wild type waxy onions [25,26] and
waxy DH2107 had the largest mean adjusted peak area of 2.015 (Table 2). Adjusted mean peak area for
semi-glossy plants from PI 264320 was 1.091, followed by the other semi-glossy accessions ranging
from 0.533 to 0.648 (Table 2). Glossy B9885 had a slightly higher adjusted peak area for H16 at 0.700,
and glossy ‘Odourless Greenleaf’ (OGL; PI 289689)) was unique with essentially no H16 at 0.002
(Table 2). The segregating F2 family had adjusted peak areas for H16 ranging from 0.00 to 2.67 with a
mean of 0.84 (Supplementary Figure S1).

Glossy OGL and semi-glossy 264,320 had the largest amounts of Oct with a mean adjusted peak
areas of 0.546 and 0.586, followed by the semi glossy and glossy accessions (Table 2). Waxy DH2107
had a relatively low amount of Oct at 0.496, in agreement with Damon et al. [25] and Munaiz et al. [26].
Amounts of Oct were not consistent with visual phenotypes, for example glossy OGL and waxy DH2107
had statistically the same amount of Oct. The phenotypic distribution in the segregating F2 family for
Oct ranged from 0.00 to 0.39 adjusted peak areas with a mean of 0.14 (Supplementary Figure S1).

OGL foliage accumulated no Tri. Semi-glossy B5351 (0.075) and glossy B9885 (0.140) had lower
amounts of Tri compared with the semi glossy accessions PIs 264320, 546192, and 546115, which ranged
from 0.195 to 0.247 mean adjusted peak areas (Table 2). Waxy DH2107 had a slightly larger mean
adjusted peak area of Tri at 0.260. The phenotypic distribution for Tri in the segregating F2 family
ranged from 0.00 to 0.25 with a mean at 0.08 (Supplementary Figure S1).

Table 1. Origins and visual foliar phenotypes of accessions evaluated for epicuticular waxes by gas
chromatography and spectroscopy.

Accession z ‘Cultivar’ and Origin Phenotype y

B9885 ‘White Persian’, Iran GL
289689 ‘Odourless Green Leaf’, Australia GL
546115 ‘White Sweet Spanish Jumbo’, USA SG
546192 ‘Yellow Sweet Spanish’, USA SG
264320 ‘Grano’, Spain SG
B5351 ‘Sweet Spanish Colorado #6′, USDA SG

DH2107 Cornell University, USA WX
z Six-digit numbers are plant introductions from the USDA plant germplasm system. Origins of B5351 was described
in Damon et al. [25], B9885 in Munaiz and Havey [34], and DH2107 by Hyde et al. [35]. y Visually scored leaf
phenotypes, GL = glossy, SG = semi glossy, and WX = waxy.

Table 2. Mean adjusted peak areas with standard errors (SE) for Hentriacontanone-16 (H16), Octacosanol-1
(Oct), and Triacontanol-1 (Tri) measured with gas chromatography mass spectrometry (GCMS) on leaves
of plants from seven onion accessions (Table 1) and Tukey’s significance difference. Accessions are ranked
from lowest to highest by amounts of H16.

Accession z Phenotype x H16 SE Oct SE Tri SE

OGL GL 0.002 y 0.088 a 0.554 0.037 c 0.000 0.025 a
546115 SG 0.532 0.088 b 0.364 0.037 b 0.223 0.025 cd
546192 SG 0.642 0.124 bc 0.454 0.037 bc 0.195 0.025 bcd
B5351 SG 0.648 0.088 b 0.141 0.053 a 0.075 0.036 ab
B9885 GL 0.700 0.088 bc 0.444 0.037 bc 0.140 0.025 bc
264320 SG 1.091 0.088 c 0.586 0.037 c 0.247 0.025 cd

DH2107 WX 2.015 0.088 d 0.496 0.037 bc 0.260 0.025 d
z Origins of accessions listed in Table 1. y Means followed by the same letter were not significantly different using
Tukey’s multiple range test at p < 0.05. x Visually scored leaf phenotypes, GL = glossy, SG = semi glossy, and WX = waxy.
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Table 3. Percentages of individual waxes on leaves of plants from seven onion accessions measured
with GCMS (Table 1). Accessions are ranked from the lowest to highest percentages of H16.

Accession z Phenotype y Waxes

H16 Oct Tri Met Hex Octd Hepc Hepd

OGL GL 0.3 70.7 0.0 0.1 19.2 9.6 0.0 0.0
546115 SG 36.8 25.1 15.4 2.8 11.1 0.2 4.8 3.7
546192 SG 40.6 28.7 12.3 3.8 3.2 1.2 6.0 4.1
B5351 SG 52.9 11.5 6.1 5.0 1.1 2.5 12.0 8.9
B9885 GL 44.4 28.2 8.9 2.5 3.8 3.9 3.1 5.2
264320 SG 48.1 25.8 10.9 2.7 4.5 1.1 3.4 3.4

DH2107 WX 65.0 16.0 8.4 1.5 2.4 0.9 2.2 3.6
z Origin of accessions listed in Table 1. y Waxes are hentriacontanone-16 (H16), octacosanol-1 (Oct), triacontanol-1
(Tri), 2-methyloctacosane (Met), hexacosanol-1 (Hex), 1-ethenyloxy octadecane (Octd), heptacosane (Hepc), and
heptadecanol-1 (Hepd) as described by Damon et al. [25]. y Visually scored leaf phenotypes, GL = glossy, SG = semi
glossy, and WX = waxy.

Table 4. Spectroscopy validation parameters, R2 values, root-mean-square error (RMSE), range of
the interval, and percentage of error within the range for cross calibration and validation models for
Hentriacontanone-16 (H16), Octacosanol-1(Oct), and Triacontanol-1 (Tri) on the foliage of seven onion
accessions (Table 1).

Wax
Cross Validation Validation y

R2 RMSE % Range R2 RMSE % Range

H16 0.86 0.182 8.25 0–2.20 0.72 0.304 12.62 0–2.41
Oct 0.67 0.108 14.03 0–0.77 0.70 0.102 15.47 0–0.66
Tri 0.48 0.068 16.38 0–0.41 0.41 0.072 20.73 0–0.35

y Validation on an external data set that included the segregating family.

2.2. Proportions of Amounts of Individual Waxes to Total Wax

Relative proportion of H16 to other wax components is associated with visual leaf phenotypes [24–26,36]
and the onion accessions differed significantly for relative proportions of specific waxes [26]. Waxy DH2107
possessed the largest proportion of H16 at 65.0% (Table 3) and lower proportions of fatty alcohols Oct at
16.0% and Tri at 8.4%. The semi-glossy PIs had relatively similar proportions of H16 ranging from 36.8% for
PI 546115 to 52.9% for B5351. Glossy OGL accumulated essentially no H16 and higher proportions of the
fatty alcohols Oct at 70.7% and Hex at 19.2%, and a relatively high proportion of the alkane 1-ethenyloxy
octadecane at 9.6%. Tri ranged from 0.00% (OGL) to 15.9% among all accessions with PI 546115 having the
highest proportion of this wax. OGL has a unique wax profile compared to all other waxy, semiglossy, and
the other mutant glossy B9885 [34].

2.3. Variation of Reflectance for Purified Chemical Standards

Chemical standards were used to determine the reflectance spectroscopic absorptions for H16,
Oct, and Tri, the three most abundant epicuticular waxes on the foliage of wild-type waxy onion. For
H16, reflectance peaks occurred at wavelengths of 365, 437, 1233, 1372, 1440, 1610, 1714, 1757, 1850,
2031, 2082, 2222, 2302, 2348, 2445, and 2499 nm (Figure 1) with a unique wavelength at 2259 (Figure 1,
purple line). Unique spectral signatures distinguish the presence versus absence of a specific wax and can
be considered as a single spectral variation (SSV). For Oct, a unique spectral feature was detected at 650
nm and spectral features at 915, 1500, 1890, and 2175 nm were shared with Tri (Figures 2 and 3). For Tri,
a unique absorption feature was revealed at 730 nm (Figure 3). Tri did not have a major reflectance
peak at 437 nm compared to H16 and Oct, and wavelengths within the range 2020–2030 nm overlapped
between Tri and H16, but not with Oct (Figure 3). These results indicate that there are unique spectral
signatures distinguishing H16, Oct, and Tri. Of note, there are strong spectral signals for all waxes at
1714–1757 nm and 2302–2348 nm.
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Figure 2. First derivative reflectance of pure Octacosanol-1. Black vertical lines indicate absorption
features associated with H16, Octacosanol-1, and Triacontanol-1. Green lines are Octacosanol-1 specific.
The green arrow at 645 nm depicts a unique absorption feature for Octacosanol-1.

2.4. Predictions of Wax Components Using PLSR Models

For the calibration of spectral data, we evaluated waxy DH2107, glossy OGL with essentially no
H16 and Tri, and semi-glossy PI 546303 with a lower amount of H16, PI 546115 with a higher amount
of Tri, PI 546192 with a higher amount of Oct, and PI 264320 with a lower amount of H16, all relative to
waxy DH2107. Quality control of each spectral measurement was visually assessed, and those with
abnormalities due to a technical error or low reflectance were removed and therefore not included in
the downstream prediction analysis [37,38].
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Figure 3. First derivative reflectance of the pure Triacontanol-1. Black vertical lines indicate absorption
features common with H16 and Octacosanol-1. Green lines indicate absorption features unique to
Octacosanol-1 and blue lines depicted with a blue arrow on the base are Triacontanol-1 specific.

2.4.1. H16

Predictions for the amounts of H16 on the foliage of the seven onion accessions using partial
least-squares regression (PLSR) models showed the highest coefficient of determination (R2) at 0.86 (Table 4),
root-mean-square error (RSME) of 0.182 and a relative RMSE at 8.2% (of a data range of 0.00–2.20 of H16).
The prediction accuracy of the PLSR model on external data that included a segregating family yielded an R2
of 0.72, RMSE was slightly higher at 0.304, and relative RMSE at 12.4% (range 0.00–2.41), indicating that the
prediction model for H16 was robust. The scatter plot of the best regression showed significant correlations
(Supplemental Figure S2). The randomly dispersed residuals along the horizontal axis indicated that the
PLSR model is well suited to predict H16 values (Supplemental Figure S2). Higher residual values suggest
that the model may overestimate higher values of H16 amounts. Density distribution of the F2 segregating
family for the two data sets showed a similar mean value at 0.84 and 0.83 for the GCMS and spectroscopy
prediction, respectively (Supplementary Figure S1). Variable importance in projection (VIP) scores estimate
the relevance of each wavelength used in the PLS regression model. A VIP greater than 1 indicates the most
important wavelength in the model (Figure 4, A-bottom, blue line). VIP revealed that the most relevant
wavelengths measured in living tissue were 365 nm, 525 nm, 712 nm, 980 nm, 1150 nm, 1270 nm, 1372 nm,
1860 nm, 1895 nm, 2380 nm, and 2450 nm (Table 5). Interestingly, wavelengths 365 nm, 1372 nm, 1860 nm,
and 2450 nm (Figure 4A) were aligned with peaks identified in the H16 pure standard measurements
(Figure 1) suggesting that these wavelengths were more relevant for highest prediction accuracy for H16.
Standardized coefficients with higher absolute values for given wavelengths have a greater influence on
H16 prediction (Figure 4, A-top, black line). Standardized coefficients detected most relevant wavelengths
measured in living tissue at 525 nm, 650 nm, 690 nm, 975 nm, and 1900 nm. In addition, wavelengths
365 nm, 1233 nm, 1372 nm, 1850 nm, 2031 nm, 2082 nm, 2348 nm, and 2445 nm (Table 5, Figure 4A) were also
detected and aligned with those revealed by the H16 pure standard measurements (Figure 1). These quality
parameters revealed that the most relevant wavelengths for highest prediction accuracy for H16. Curran [4]
reported that absorption features at 970 nm, 1200 nm, 1400 nm, and 1940 nm were the result of the bending
and stretching of the O-H bond in water and other molecules. For H16, an important absorption feature
overlapped with water absorption occurring in the 900–1000 nm spectral range [4,39]. The unique 2259 nm
feature identified for the purified standard was not an important contributor to the chemometric model due
to the relative diagnostic strength of other spectral features also identified in the standard (Figure 4A).
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Table 5. Spectral features revealed on living tissue with standardized coefficients and VIP for the
wavelengths most important for epicuticular waxes Hentriocontanone-16 (H16), Octacosanol-1 (Oct-1),
and Triacontanol-1 (Tri1) based on visible-near-infrared to shortwave infrared reflectance (VSWIR,
350–2500 nm) on leaves using a portable spectroradiometer.

Chemical y Standardized Coefficients z VIP z

H16 (nm) 365, 525, 650, 690, 975, 1233, 1372, 1850,
1900, 2031, 2082, 2348, and 2445

365, 525, 712, 980, 1150,1270, 1372,
1860, 1895, 2380, and 2450

Oct (nm) 365, 437, 550, 680, 750, 1890, 1950, 2300,
and 2499

365, 550, 645, 680, 725, 1000, 1150,
1233, 1372, and 1870

Tri (nm) 365, 437, 525, 643, 680, 730, 915, 991,
1150, 1233, 1372, 1890, 2302, and 2449

365, 680,730, 980, 1150, 1328, 1390,
1610, and 1890

y Bold numbers indicate unique fingerprints for the corresponding chemical in nanometers (nm). z Wavelengths in
italics aligned with those revealed with each wax chemical standard in Figures 1–3, respectively.
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coefficients (black line) for fatty alcohols. (A) Hentriacontanone-16 (H16), (B) Octacosanol-1 (Oct),
and (C) Triacontanol-1 (Tri) measured on onion leaves. VIP peaks above the red line indicate the
threshold more relevant in the partial least-squares regression (PLSR) model and wavelengths (nm) for
the detection of each wax component. In each panel vertical dotted lines indicate absorption features
detected only in living tissue, and vertical dot dash line are absorption features detected both in living
tissue and the chemical standards for H16, Oct, and Tri as shown in Figures 1–3, respectively.

2.4.2. Oct

For Oct, cross validation of the PLSR model revealed a relatively high R2 at 0.67, root-mean-square
error of the model at 0.108, and the relative RMSE at 14.0% (Oct data range 0.00–0.77). Prediction
performance the external validation data that included the segregation family improved slightly with a
coefficient of determination at 0.70 (RMSE 0.102) and similar relative RMSE of 15.5% (range of 0.00–0.67),
indicating the robustness of the prediction model. For Oct, the density distribution of the F2 progeny
from the two data sets showed a similar mean value at 0.143 and 0.145 for the GCMS and spectroscopy
prediction, respectively, and a median slightly higher for the spectroscopy prediction (Supplementary
Figure S1, Yellow dashed-line). Important spectral features for Oct overlapped with H16 close to
wavelengths of 365 nm, 437 nm, 1233 nm, 1372 nm, 1440 nm, 1610 nm, 1714 nm, 1757 nm, 1850 nm,
2031 nm, 2082 nm, 2222 nm, 2302 nm, 2348 nm, 2445 nm, and 2499 nm (Figure 1) suggesting that
there is an additive effect of multiple spectral features for wax components. However, the intensity of
reflectance among these signature wavelengths varies among wax components (Figures 1–3). A unique
absorption feature for Oct was revealed at wavelength 645 nm, and common wavelengths with Tri
at 915 nm, 1500 nm, 1890 nm, and 2175 nm. VIP scores indicated that most relevant wavelengths
measured in living tissue were 365 nm, 550 nm, 645 nm, 680 nm, 725 nm, 1000 nm, 1150 nm, 1233 nm,
1372 nm, and 1870 nm (Table 5). Interestingly, wavelengths 365 nm, 645 nm, 1233 nm, and 1372 nm
(Figure 4B) were aligned with peaks identified with the Oct pure standard measurements (Figure 2)
suggesting that these wavelengths were more relevant for the highest prediction accuracy for Oct.
The standardized coefficient revealed wavelengths at 365 nm, 437 nm, 550 nm, 680 nm, 750 nm,
1890 nm, 1950 nm, 2300 nm, and 2499 nm associated with the amounts of Oct. Of these wavelengths,
365 nm, 437 nm, 1890 nm, 2300 nm, and 2499 nm were in synteny with the ones revealed with Oct
pure standards measurements indicating that of highest importance for Oct is the prediction accuracy.
Importantly, the Oct unique absorption 645 nm was detected in living tissue and with the Oct pure
standard, confirming its importance for Oct chemical detection. In addition, bands at 913 nm and
1890 nm were also relevant for the prediction models given the large absolute values of the coefficient
at these wavelengths.

2.4.3. Tri

For Tri, the PLSR cross-validation model had an R2 of 0.48, root-mean-square error of the model
was 0.068, and the relative RMSE was 16.4% (Tri data range of 0.00–0.41). Prediction performance on the
external data set validation showed a similar R2 at 0.41 (RMSE 0.072) and the relative RMSE was the
highest for the three wax PLSR models at 20.7% (range 0.00–0.35; Table 4). Since the R2 obtained within
the cross-validation dataset was almost the same to the external validation dataset this is an indication of
the robustness of the regression model. The lower concentrations (and thus more compressed data range)
of Tri relative to H16 and Oct may lead to a lower R2 for prediction models. The density distributions
for Tri and the segregating F2 family showed a good overlap between the predictions from GCMS and
spectroscopy measurements with a mean at 0.88 and 0.85 (Supplementary Figure S1) and an overlap of
the medians (Supplementary Figure S1, dashed lines), indicating the robustness of the method. A unique
absorption feature for Tri was detected at wavelength 730 nm as indicated by the vertical blue dotted line
in Figure 3. For Oct and Tri, wavelengths of 915 nm, 1500 nm, 1890 nm, and 2175 nm were in common
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(Figures 2 and 3, vertical green lines). For Tri, VIP scores (Figure 4C, blue line) revealed a wavelength
365 nm, 680 nm, 730 nm, 980 nm, 1150 nm, 1328 nm, 1390 nm, 1610 nm, and 1890 nm (Table 5). In addition,
wavelengths 365 nm, 730 nm, 1610 nm, and 1890 nm (Figure 4C, bottom) aligned with those revealed with
the Tri pure standard measurements (Figure 3). The standardized coefficients (Figure 4C, top) revealed
the importance of 525 nm, 680 nm, 991 nm, and 1150 nm for this wax. In addition, wavelengths 365 nm,
437 nm, 643 nm, 730 nm, 915 nm, 1233 nm, 1372 nm, 1890 nm, 2302 nm, and 2449 nm were also detected,
which aligned with the Tri pure standard (Figure 3) suggesting that these are more relevant for this
wax highest prediction accuracy. The unique Tri fingerprint, 730 nm, stand out as an important spectral
feature for this wax, also present as a high absolute value of the VIP and chemical standard (Figure 4C,
top, black line). Interestingly, 915 nm and 1890 nm spectral wavelengths are singularly important for the
two fatty alcohols Tri and Oct prediction models. These results revealed important absorption features
across the visible-near-infrared-SWIR spectra for estimation of the amounts of the three main epicuticular
waxes on onion foliage.

2.5. Genetic Mapping Using Spectrometric Measurements of H16, Oct, and Tri

A genetic map was previously developed using an F2 family from the cross of glossy B9885 by
waxy B8667 and the glossy phenotype was associated with a recessive locus (glwp) on chromosome 8 [34].
Glossy foliage in A. fistulosum is also conditioned by a single recessive locus [40]. This same B9885 by
B8667 segregating family was used for the genetic analysis of spectroscopic measurements. Quantitative
analysis of H16 amounts using the predicted values revealed a major quantitative trait locus (QTL) on
chromosome 8 at 39.0 cM with a logarithm of odds (LOD) score of 4.9 and p < 0.001. The closest single
nucleotide polymorphism (SNP) was isotig19082_1721 at 41 cM, which explained 21% of the phenotypic
variation (Table 6), and mapped to the same genomic region as the glossy glwp locus [34]. This QTL had
an additive effect of 0.10 of the allele from waxy parent B8667 and a dominance effect 0.14 to increase
the H16 amounts. Analysis of the fatty alcohol Oct predicted with spectroscopy revealed a QTL on
chromosome 8 at 41.1 cM that explained 21% of the phenotypic variation at LOD 3.8. This QTL has an
additive allelic substitution effect of 0.36 from the waxy parent and a dominant effect 0.31 increasing
amounts of Oct. We also detected the same QTL for the fatty alcohol Tri measured with spectrometry
(Table 6) with the closest SNP being isotig19082_1721. The phenotypic variation explained was 36.4% at
a LOD score of 9.1. QTLs affecting the amounts of Oct and Tri detected by spectrometry explained a
larger proportion of the phenotypic variation than GCMS (Table 6). In addition, the LOD score for Tri
was higher with spectroscopy than GCMS at 9.1 versus 5.5, respectively, and the prediction model using
hyperspectral tools with the R2 cross-validation dataset was almost identical to the external validation
dataset. These results demonstrate that mapping and genetic effects using predicted spectroscopic values
(Table 6) detected the same major QTL as GCMS [34].

Table 6. Comparison of chromosome (Chr) and position (Pos) in centiMorgans of the most significant
single nucleotide polymorphism (SNP), SNPs flanking the 1.5 logarithm of odds (LOD) confidence interval,
percent variation (% Var) explained, LOD threshold (Thresh) values from the permutation analysis, and
allelic effects for quantitative trait loci detected by interval mapping of amounts of hentriacontanone-16
(H16), octacosanol-1 (Oct), and triacontanol-1 (Tri) measured by gas chromatography mass spectrometry
(GCMS) and predicted by biochemical spectroscopy on foliage of F2 progenies from the cross of glossy
B9885 ×waxy B8667 onions.

Trait Chr Pos SNP z 1.5 LOD Interval z % Var LOD Thresh Add y Dom y

H16 (Spectroscopy) 8 41.1 i19082_1721 i28432_1302-i28633_2705 21.0 4.9 2.9 0.10 0.14
H16 (GCMS) 8 41.1 i19082_1721 i41653_558-i20235_630 45.6 15.8 9.3 0.57 0.33

Oct (Spectroscopy) 8 41.1 i19082_1721 i29044_2564-i28633_2705 21.0 3.8 3.5 0.36 0.31
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Table 6. Cont.

Trait Chr Pos SNP z 1.5 LOD Interval z % Var LOD Thresh Add y Dom y

Oct (GCMS) 8 46.2 i20235_630 i19082_1721–i28633_2705 16.9 3.7 3.5 0.36 0.31

Tri (Spectroscopy) 8 41.1 i19082_1721 i41653_558-i20235_630 36.4 9.1 3.6 0.29 0.28
Tri (GCMS) 8 46.2 i20235_630 i19082_1721–i28633_2705 23.3 5.5 3.6 0.30 0.19
z i = names and map positions of SNPs were reported by Munaiz and Havey [34]. y Significant additive (Add) and
dominance (Dom) effects of allele from the waxy parent (B8667) that increased the amounts.

3. Materials and Methods

3.1. Plant Materials

Seven onion accessions were used to measure the amounts and types of epicuticular waxes on
leaves by GCMS and spectroscopy: plants from the cultivar ‘Odourless Greenleaf’ (OGL; USDA plant
introduction (PI) 289689) and inbred B9885 (PI 546303) have visually glossy foliage; PIs 264320, 546115,
and 546192 and inbred B5351 (selected from the cultivar ‘Colorado #6′) have visually semi-glossy
foliage; and doubled haploid (DH) 2107 [35] has visually waxy leaves [25]. Seeds were sown into a
soilless mix (Metro-Mix, Sun-Gro Horticulture, Agawam, MA, USA) in 96-well trays in a greenhouse
with supplemental lighting at 14 h days and constant temperature of 24 ◦C. After 20 days, plants
transferred to 35.6 cm diameter pots and arranged in a greenhouse in a completely randomized design
with three replications. Plants were watered using an automatic flooding system activated once per
day that supplied 1/4 Hoagland’s solution [41]. Five consecutively aged leaves on each plant were used
for spectral measurements and for the determination of wax composition by GCMS. This experiment
was repeated twice.

A segregating F2 family from the cross of glossy B9885 with waxy B8667 [34] was grown in the
field in 2017 at the Dean Kincaid Farm (Palmyra, WI, USA) under normal production conditions and
bulbs were harvested and stored at 4–7 ◦C in the dark for 4 months. One hundred F2 bulbs were
planted into Metro-Mix in 35.6-cm diameter pots and grown in a greenhouse at the UW Arlington
Research Farm under 12-h days and temperatures of 27 ◦C and 22 ◦C nights. Seven weeks after bulb
planting, the middle longitudinal section of the third leaf on each of the 94 plants was used for spectral
measurement. Since spectral readings are non-destructive, two consecutive leaf segments (2.5 cm
approximately) of the same leaf were sampled for GCMS.

3.2. Spectral Measurements of Onion Leaves

Spectral reflectance of onion leaves was measured using a PSR+ 3500 high resolution full range
portable spectroradiometer (Spectral Evolution, Lawrence, MA, USA). Each measurement utilized a
bifurcated fiber optic, in which one fiber illuminated the foliage with light from a tungsten-halogen
source and the other transmitted the reflected light to the detector. The fiber optic cable was pointed
perpendicularly to the onion leaf and wrapped with a black cloth (5 cm × 5 cm) to avoid light
contamination. Relative reflectance was calculated using a 99% spectralon panel (Labsphere, North
Sutton, NH, USA). Reflectance measurements were taken on four leaves on each of the three plants per
accession and were recorded at four consecutive points along the middle longitudinal region of each
leaf. The four reflectance measurements per leaf were then averaged. For spectroscopic measurements
of the segregating F2 progenies, four reflectance measurements were taken on the third leaf of each
plant as described above, and these measurements were averaged to obtain one spectral reading per
F2 plant.

3.3. Spectral Measurements of Chemical Standards

Pure standards of the three main epicuticular waxes on onion foliage (H16 (>95%), Oct (99%), and
Tri (>99%)) were used for spectral calibration (Tokyo Chemical, Portland, OR, USA). Each standard
powder was poured on a device with a conical frustum well (6.3 mm × 12.6 mm × 10.0 mm) mounted
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with a lens 12.7 mm diameter and 3 mm thick (Thorlabs, Newton, NJ, USA), and lightly shaken to
distribute the sample. Measurements were conducted with the fiber optic cable held perpendicularly
to each sample and relative reflectance was calculated using the 99% spectralon panel. Reflectance
was recorded four times at four consecutive points so that each spectrum was the average of the four
reflectance measurements.

3.4. Gas Chromatography Gas Spectroscopy (GCMS)

Samples for GCMS of epicuticular waxes were harvested as described above, weighed, and
docosane (Sigma-Aldrich, St. Louis, MO, USA) dissolved in high-performance liquid chromatography
(HPLC) grade chloroform (Fisher Scientific, Hampton, NH, USA) was added onto the surface of
each leaf sample at 100 µg per g of leaf fresh weight. Leaf pieces were then submerged into
HPLC-grade chloroform (Sigma-Aldrich) for 1 min and discarded. Chloroform was evaporated under
a fume hood and the dried residue was dissolved in 500 µL chloroform, 600 µL acetronitrile (Fisher
Scientific, HPLC grade), 210 µL N,O bis(trimethylsilyl)trifluoroacetamide BSTFA (Sigma-Aldrich, 1%
trimethyl-chlorosilane, HPLC/GC grade), and treated at 80 ◦C for 30 min for derivatization. Waxes
were identified and quantified using GCMS instrument QP2010 (Shimadzu, Columbia, MD, USA)
with a capillary GC column (SH-Rxi-5Sil MS; 30 m long; 0.30 mm i.d.; df = 0.25 µm), and on-column
injection at 250 ◦C, column oven temperature 150 ◦C constant for 10 min, ramp 10 ◦C per min. to 300 ◦C,
constant for 10 min. Helium was the carrier at a flow rate of 1.0 mL per min with primary pressure of
700 kPa. Tandem MS was equipped with a detector (GCMS-QP2010) with ion source range, 35–600 m/z,
for identification of the wax components. The detection MS interface and ion source temperatures
were 290 and 260 ◦C respectively, and a split ratio of 20. The amounts of individual waxes are reported
as mean peak areas adjusted to the internal docosane standard, and therefore represent peak areas of
each wax per gram of leaf fresh weight.

3.5. Model Development

Data were partitioned randomly with two-thirds for calibration and one-third for validation,
with the constraint of drawing evenly from all quartiles. Validation data were never used for model
building. The same calibration and validation data sets were used for all chemicals. Spectral data in
the native format were provided at 1 nm intervals, interpolated from the native 1.5–3.8 nm resolution;
however, we used data at 5 nm intervals (350 nm, 355 nm, 360 nm, etc., to 2500 nm) as preliminary
testing showed no benefit of using every wavelength. Partial least-squares regression (PLSR) [33,42–45]
was used to estimate the amounts of H16, Oct, and Tri as a function of 5 nm interval spectra. PLSR is
widely used in chemometrics (chemical discipline lead by data driven deployment of chemical analysis
by applying mathematical and statistics methods), and operates by iteratively transforming predictor
and response variables to identify latent vectors that maximize the covariance between independent
(wavelengths) and dependent (biochemical analytic) variables while simultaneously maintaining the
constraint of being orthogonal to the previously determined factors. PLSR generates a coefficient
of multiple determination for every wavelength, which when applied to a new dataset generates a
prediction for the measurement. We utilized the predicted residual sum of squares (PRESS) [46] over
500 permutations of the 66% calibration data split 90/10 to select the number of latent vectors that
minimized PRESS. The cross-validation R2 was the result of 500 permutations. Once a model was
determined, validation R2 was determined from the application of the coefficients of determination to
the independent validation data set (33%) that included the segregating F2 family.

3.6. Data Analysis

Statistical analyses were performed according to the experimental design in R studio [47].
Accessions and replicate were considered as fixed effects. Analysis of variance was used for fixed effects
with the anova function and Lmer package with function lm for model analysis. Significant differences
for wax composition among accessions were tested using the package emmeans and Tukey’s honest
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significant difference at p = 0.05. The model used to estimate accession means was yijk = µ + gi + tj +

gtij + εijk; where µ is the overall mean, gi is the fixed effect of the ith onion accession, tj is the fixed
effect of the jth repetition, gtij is the effect of the ijth accession by repetition, and εijk are residuals.

In addition to R2 and root-mean-square error (RMSE) estimates using the package hydroGOF and
rmse function, the model coefficients provided information on areas of the visible-through-shortwave-
infrared (VSWIR) spectrum that are most predictive of the independent variable of interest [47]. We
displayed the standardized PLSR coefficients (centered and standardized) enabling comparison across
wavelengths because of differences in magnitude in different areas of the spectrum, e.g., low reflectance
in blue and red, high reflectance in near infrared). We also used the VIP (variable importance of
projection) statistic as described in Wold [48], which evaluates the importance of individual wavelengths
in explaining the variation in both the response and predictor variables based on partial-R2; larger VIP
scores indicate greater contribution by specific wavelengths to the predictive model. The important
wavelengths (either using standardized coefficients or VIP) indicate potential molecular absorption
features that enable detection of the chemical compound. We interpreted these based on the literature,
as well as first-derivative spectra of standards of each chemical.

3.7. QTL Analysis

Quantitative analysis of spectroscopic predicted values for H16, Oct, and Tri used the genetic map
previously reported by Munaiz and Havey [34]. Interval mapping with pseudo markers imputed at 1
centimorgan (cM) was used the R/qtl package [49]. To account for neighboring markers Haley Knott
regression was used with parameters 10 cM window, and ten markers as covariates [50]. Significant
association used the 95% significance LOD threshold after 1000 permutations. Stepwiseqtl function
was implemented at 0.05 significance and effects of candidate QTLs were estimated using makeqtl
and fitqtl in R. The fitted model provided the percentage of the variation explained by the QTLs and
estimated allelic substitution effects.

4. Conclusions

Reflectance spectroscopy was used for non-destructive measurement of amounts of major
epicuticular waxes on onion leaves and revealed distinct absorption features in the visible (645 nm),
near infrared (730 nm), and SWIR (2259 nm) for Oct, Tri, and H16, respectively. We observed
high coefficients of validation (0.84, 0.67, and 0.48) and good quality overlap between GCMS and
spectroscopic measurements. We also demonstrated that spectroscopy can be used reliably for
identification of unique wax phenotypes such as OGL and for genetic analyses of wax amounts
confirming a QTL on chromosome 8 associated with amounts of Oct, Tri, and H16. Hyperspectral
analyses should be an effective tool for non-destructive measurements of amounts of specific epicuticular
waxes on onion foliage towards the development of thrips resistant onions. Since we were able to identify
unique features for each wax, spectroscopy can be used for selection by identifying presence–absence
variation of SSV, for instance selecting lines in the field with no H16 or Tri. Another strategy to develop
thrips resistance in onions could be recurrent selection for lower levels of H16 and higher amounts of
fatty alcohols using spectroscopy as a non-destructive, in situ, and rapid tool.

Supplementary Materials: The following are available online, Figure S1: Density plots comparing mean
amounts ± standard errors of fatty alcohols (Octacosanol-1(Oct, left) and Triacontanol-1 (Tri, center)) and ketone
Hentriacontanone-16 (H16, right) from GCMS and spectroscopy. Y-axes on the left are for plots of Oct and Tri, and
the y-axis on the right for H16. Horizontal axis shows amounts of wax component. Vertical dashed lines show the
median for GCMS (blue) and Spectroscopy (yellow). Figure S2. Scatter plot of the best regression for observed
and predicted H16 values (top) and plot of residuals and observed values (bottom).
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