Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = heme distortion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3296 KB  
Article
Curvature-Influenced Electrocatalytic NRR Reactivity by Heme-like FeN4-Site on Carbon Materials
by Yajie Meng, Ziyue Huang, Xi Chen, Yingqi Li, Xueyuan Yan, Jiawei Xu and Haiyan Wei
Molecules 2025, 30(8), 1670; https://doi.org/10.3390/molecules30081670 - 8 Apr 2025
Viewed by 673
Abstract
Two-dimensional carbon materials and their derivatives are widely applied as promising electrocatalysts and supports of single-atom sites. Theoretical investigations of 2D carbon materials are usually based on planar models, yet ignore local curvature brought on by possible surface distortion, which can be significant [...] Read more.
Two-dimensional carbon materials and their derivatives are widely applied as promising electrocatalysts and supports of single-atom sites. Theoretical investigations of 2D carbon materials are usually based on planar models, yet ignore local curvature brought on by possible surface distortion, which can be significant to the exact catalytic performance as has been realized in latest research. In this work, the curvature-influenced electrocatalytic nitrogen reduction reaction (NRR) reactivity of heme-like FeN4 single-atom site was predicted by a first-principle study, with FeN4-CNT(m,m) (m = 5~10) models adopted as local curvature models. The results showed that a larger local curvature is favored for NRR, with a lower limiting potential and higher N2 adsorption affinity, while a smaller local curvature shows lower NH3 desorption energy and is beneficial for catalyst recovery. Using electronic structures and logarithm fitting, we also found that FeN4-CNT(5,5) shows an intermediate-spin state, which is different from the high-spin state exhibited by other FeN4-CNT(m,m) (m = 6~10) models with a smaller local curvature. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

14 pages, 6166 KB  
Article
Computational Exploration of Minimum Energy Reaction Pathway of N2O Formation from Intermediate I of P450nor Using an Active Center Model
by Yusuke Kanematsu, Hiroko X. Kondo and Yu Takano
Int. J. Mol. Sci. 2023, 24(24), 17172; https://doi.org/10.3390/ijms242417172 - 6 Dec 2023
Cited by 2 | Viewed by 1623
Abstract
P450nor is a heme-containing enzyme that catalyzes the conversion of nitric oxide (NO) to nitrous oxide (N2O). Its catalytic mechanism has attracted attention in chemistry, biology, and environmental engineering. The catalytic cycle of P450nor is proposed to consist of three major [...] Read more.
P450nor is a heme-containing enzyme that catalyzes the conversion of nitric oxide (NO) to nitrous oxide (N2O). Its catalytic mechanism has attracted attention in chemistry, biology, and environmental engineering. The catalytic cycle of P450nor is proposed to consist of three major steps. The reaction mechanism for the last step, N2O generation, remains unknown. In this study, the reaction pathway of the N2O generation from the intermediate I was explored with the B3LYP calculations using an active center model after the examination of the validity of the model. In the validation, we compared the heme distortions between P450nor and other oxidoreductases, suggesting a small effect of protein environment on the N2O generation reaction in P450nor. We then evaluated the electrostatic environment effect of P450nor on the hydride affinity to the active site with quantum mechanics/molecular mechanics (QM/MM) calculations, confirming that the affinity was unchanged with or without the protein environment. The active center model for P450nor showed that the N2O generation process in the enzymatic reaction undergoes a reasonable barrier height without protein environment. Consequently, our findings strongly suggest that the N2O generation reaction from the intermediate I depends sorely on the intrinsic reactivity of the heme cofactor bound on cysteine residue. Full article
(This article belongs to the Special Issue Advanced Research in Prediction of Protein Structure and Function)
Show Figures

Figure 1

17 pages, 2794 KB  
Review
Heme Interactions as Regulators of the Alternative Pathway Complement Responses and Implications for Heme-Associated Pathologies
by Stefanos A. Tsiftsoglou
Curr. Issues Mol. Biol. 2023, 45(6), 5198-5214; https://doi.org/10.3390/cimb45060330 - 16 Jun 2023
Cited by 4 | Viewed by 3058
Abstract
Heme (Fe2+-protoporphyrin IX) is a pigment of life, and as a prosthetic group in several hemoproteins, it contributes to diverse critical cellular processes. While its intracellular levels are tightly regulated by networks of heme-binding proteins (HeBPs), labile heme can be hazardous [...] Read more.
Heme (Fe2+-protoporphyrin IX) is a pigment of life, and as a prosthetic group in several hemoproteins, it contributes to diverse critical cellular processes. While its intracellular levels are tightly regulated by networks of heme-binding proteins (HeBPs), labile heme can be hazardous through oxidative processes. In blood plasma, heme is scavenged by hemopexin (HPX), albumin and several other proteins, while it also interacts directly with complement components C1q, C3 and factor I. These direct interactions block the classical pathway (CP) and distort the alternative pathway (AP). Errors or flaws in heme metabolism, causing uncontrolled intracellular oxidative stress, can lead to several severe hematological disorders. Direct interactions of extracellular heme with alternative pathway complement components (APCCs) may be implicated molecularly in diverse conditions at sites of abnormal cell damage and vascular injury. In such disorders, a deregulated AP could be associated with the heme-mediated disruption of the physiological heparan sulphate–CFH coat of stressed cells and the induction of local hemostatic responses. Within this conceptual frame, a computational evaluation of HBMs (heme-binding motifs) aimed to determine how heme interacts with APCCs and whether these interactions are affected by genetic variation within putative HBMs. Combined computational analysis and database mining identified putative HBMs in all of the 16 APCCs examined, with 10 exhibiting disease-associated genetic (SNPs) and/or epigenetic variation (PTMs). Overall, this article indicates that among the pleiotropic roles of heme reviewed, the interactions of heme with APCCs could induce differential AP-mediated hemostasis-driven pathologies in certain individuals. Full article
Show Figures

Figure 1

16 pages, 2791 KB  
Article
Elucidation of the Correlation between Heme Distortion and Tertiary Structure of the Heme-Binding Pocket Using a Convolutional Neural Network
by Hiroko X. Kondo, Hiroyuki Iizuka, Gen Masumoto, Yuichi Kabaya, Yusuke Kanematsu and Yu Takano
Biomolecules 2022, 12(9), 1172; https://doi.org/10.3390/biom12091172 - 24 Aug 2022
Cited by 4 | Viewed by 3198
Abstract
Heme proteins serve diverse and pivotal biological functions. Therefore, clarifying the mechanisms of these diverse functions of heme is a crucial scientific topic. Distortion of heme porphyrin is one of the key factors regulating the chemical properties of heme. Here, we constructed convolutional [...] Read more.
Heme proteins serve diverse and pivotal biological functions. Therefore, clarifying the mechanisms of these diverse functions of heme is a crucial scientific topic. Distortion of heme porphyrin is one of the key factors regulating the chemical properties of heme. Here, we constructed convolutional neural network models for predicting heme distortion from the tertiary structure of the heme-binding pocket to examine their correlation. For saddling, ruffling, doming, and waving distortions, the experimental structure and predicted values were closely correlated. Furthermore, we assessed the correlation between the cavity shape and molecular structure of heme and demonstrated that hemes in protein pockets with similar structures exhibit near-identical structures, indicating the regulation of heme distortion through the protein environment. These findings indicate that the tertiary structure of the heme-binding pocket is one of the factors regulating the distortion of heme porphyrin, thereby controlling the chemical properties of heme relevant to the protein function; this implies a structure–function correlation in heme proteins. Full article
Show Figures

Figure 1

15 pages, 2483 KB  
Article
Analysis of Fluctuation in the Heme-Binding Pocket and Heme Distortion in Hemoglobin and Myoglobin
by Hiroko X. Kondo and Yu Takano
Life 2022, 12(2), 210; https://doi.org/10.3390/life12020210 - 29 Jan 2022
Cited by 9 | Viewed by 4747
Abstract
Heme is located in the active site of proteins and has diverse and important biological functions, such as electron transfer and oxygen transport and/or storage. The distortion of heme porphyrin is considered an important factor for the diverse functions of heme because it [...] Read more.
Heme is located in the active site of proteins and has diverse and important biological functions, such as electron transfer and oxygen transport and/or storage. The distortion of heme porphyrin is considered an important factor for the diverse functions of heme because it correlates with the physical properties of heme, such as oxygen affinity and redox potential. Therefore, clarification of the relationship between heme distortion and the protein environment is crucial in protein science. Here, we analyzed the fluctuation in heme distortion in the protein environment for hemoglobin and myoglobin using molecular dynamics (MD) simulations and quantum mechanical (QM) calculations as well as statistical analysis of the protein structures of hemoglobin and myoglobin stored in Protein Data Bank. Our computation and statistical analysis showed that the protein environment for hemoglobin and myoglobin prominently affects the doming distortion of heme porphyrin, which correlates with its oxygen affinity, and that the magnitude of distortion is different between hemoglobin and myoglobin. These results suggest that heme distortion is affected by its protein environment and fluctuates around its fitted conformation, leading to physical properties that are appropriate for protein functions. Full article
Show Figures

Figure 1

19 pages, 8778 KB  
Article
Structure and Catalysis of Fe(III) and Cu(II) Microperoxidase-11 Interacting with the Positively Charged Interfaces of Lipids
by Tatiana Prieto, Vinicius Santana, Adrianne M. M. Britto, Juliana C. Araujo-Chaves, Otaciro R. Nascimento and Iseli L. Nantes-Cardoso
Molecules 2017, 22(8), 1212; https://doi.org/10.3390/molecules22081212 - 26 Jul 2017
Cited by 3 | Viewed by 5667
Abstract
Numerous applications have been described for microperoxidases (MPs) such as in photoreceptors, sensing, drugs, and hydrogen evolution. The last application was obtained by replacing Fe(III), the native central metal, by cobalt ion and inspired part of the present study. Here, the Fe(III) of [...] Read more.
Numerous applications have been described for microperoxidases (MPs) such as in photoreceptors, sensing, drugs, and hydrogen evolution. The last application was obtained by replacing Fe(III), the native central metal, by cobalt ion and inspired part of the present study. Here, the Fe(III) of MP-11 was replaced by Cu(II) that is also a stable redox state in aerated medium, and the structure and activity of both MPs were modulated by the interaction with the positively charged interfaces of lipids. Comparative spectroscopic characterization of Fe(III) and Cu(II)MP-11 in the studied media demonstrated the presence of high and low spin species with axial distortion. The association of the Fe(III)MP-11 with CTAB and Cu(II)MP-11 with DODAB affected the colloidal stability of the surfactants that was recovered by heating. This result is consistent with hydrophobic interactions of MPs with DODAB vesicles and CTAB micelles. The hydrophobic interactions decreased the heme accessibility to substrates and the Fe(III) MP-11catalytic efficiency. Cu(II)MP-11 challenged by peroxides exhibited a cyclic Cu(II)/Cu(I) interconversion mechanism that is suggestive of a mimetic Cu/ZnSOD (superoxide dismutase) activity against peroxides. Hydrogen peroxide-activated Cu(II)MP-11 converted Amplex Red® to dihydroresofurin. This study opens more possibilities for technological applications of MPs. Full article
(This article belongs to the Special Issue Metallopeptides)
Show Figures

Graphical abstract

Back to TopTop