Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = hematite nanorods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9503 KiB  
Article
Optimizing Charge Separation and Transport: Enhanced Photoelectrochemical Water Splitting in α-Fe2O3/CZTS Nanorod Arrays
by Wen Chen, Ao-Sheng She, Ming-Hao Ji, Hao-Yan Shi, Yang Yang, Yi-Hu Pu, Rui Chen, Wei-Hua Yang, Yan-Xin Chen and Can-Zhong Lu
Catalysts 2024, 14(11), 812; https://doi.org/10.3390/catal14110812 - 11 Nov 2024
Cited by 1 | Viewed by 1310
Abstract
This study explores the enhancement of α-Fe2O3 (hematite) nanorod arrays for photoelec-trochemical applications by constructing a Cu2ZnSnS4 (CZTS) heterojunction. While α-Fe2O3 offers good stability, a low cost, and environmental benefits, its efficiency is limited [...] Read more.
This study explores the enhancement of α-Fe2O3 (hematite) nanorod arrays for photoelec-trochemical applications by constructing a Cu2ZnSnS4 (CZTS) heterojunction. While α-Fe2O3 offers good stability, a low cost, and environmental benefits, its efficiency is limited by slow oxygen evolution kinetics, high carrier recombination rates, and low conductivity. By introducing CZTS, a material with strong light absorption and charge transport properties, we enhance the separation of photogenerated charge carriers, reduce charge transfer resistance, and increase the carrier concentration, thereby boosting the overall photoelectrochemical performance. The experimental results show that a modified FC-15 photoanode achieves a photocurrent density of 3.40 mA/cm2 at 1.60 V vs. RHE, a substantial increase compared to 0.40 mA/cm2 for unmodified α-Fe2O3. Band gap analysis reveals a reduced band gap in the FC-15 material, enhancing light absorption and boosting the photoelectrocatalytic performance. In photoelectrochemical water-splitting tests, the FC-15 photoanode achieves a hydrogen production rate of 41.6 μmol/cm2/h, which is significantly improved over the unmodified sample at 5.64 μmol/cm2/h. These findings indicate that the CZTS/α-Fe2O3 heterojunction effectively promotes charge separation, enhances charge transport, and improves light absorption, substantially increasing photocatalytic efficiency. This heterojunction approach offers new insights and technical strategies for developing photocatalytic materials with potential applications in renewable energy. Full article
(This article belongs to the Special Issue Recent Advances in Photo/Electrocatalytic Water Splitting)
Show Figures

Graphical abstract

17 pages, 4121 KiB  
Article
Plasma-Enhanced Atomic Layer Deposition of Hematite for Photoelectrochemical Water Splitting Applications
by Thom R. Harris-Lee, Andrew Brookes, Jie Zhang, Cameron L. Bentley, Frank Marken and Andrew L. Johnson
Crystals 2024, 14(8), 723; https://doi.org/10.3390/cryst14080723 - 13 Aug 2024
Viewed by 2134
Abstract
Hematite (α-Fe2O3) is one of the most promising and widely used semiconductors for application in photoelectrochemical (PEC) water splitting, owing to its moderate bandgap in the visible spectrum and earth abundance. However, α-Fe2O3 is limited by [...] Read more.
Hematite (α-Fe2O3) is one of the most promising and widely used semiconductors for application in photoelectrochemical (PEC) water splitting, owing to its moderate bandgap in the visible spectrum and earth abundance. However, α-Fe2O3 is limited by short hole-diffusion lengths. Ultrathin α-Fe2O3 films are often used to limit the distance required for hole transport, therefore mitigating the impact of this property. The development of highly controllable and scalable ultrathin film deposition techniques is therefore crucial to the application of α-Fe2O3. Here, a plasma-enhanced atomic layer deposition (PEALD) process for the deposition of homogenous, conformal, and thickness-controlled α-Fe2O3 thin films (<100 nm) is developed. A readily available iron precursor, dimethyl(aminomethyl)ferrocene, was used in tandem with an O2 plasma co-reactant at relatively low reactor temperatures, ranging from 200 to 300 °C. Optimisation of deposition protocols was performed using the thin film growth per cycle and the duration of each cycle as optimisation metrics. Linear growth rates (constant growth per cycle) were measured for the optimised protocol, even at high cycle counts (up to 1200), confirming that all deposition is ‘true’ atomic layer deposition (ALD). Photoelectrochemical water splitting performance was measured under solar simulated irradiation for pristine α-Fe2O3 deposited onto FTO, and with a α-Fe2O3-coated TiO2 nanorod photoanode. Full article
Show Figures

Figure 1

20 pages, 4406 KiB  
Article
Combined Magnetic Hyperthermia and Photothermia with Polyelectrolyte/Gold-Coated Magnetic Nanorods
by Marina Lázaro, Pablo Lupiáñez, José L. Arias, María P. Carrasco-Jiménez, Ángel V. Delgado and Guillermo R. Iglesias
Polymers 2022, 14(22), 4913; https://doi.org/10.3390/polym14224913 - 14 Nov 2022
Cited by 11 | Viewed by 3692
Abstract
Magnetite nanorods (MNRs) are synthesized based on the use of hematite nanoparticles of the desired geometry and dimensions as templates. The nanorods are shown to be highly monodisperse, with a 5:1 axial ratio, and with a 275 nm long semiaxis. The MNRs are [...] Read more.
Magnetite nanorods (MNRs) are synthesized based on the use of hematite nanoparticles of the desired geometry and dimensions as templates. The nanorods are shown to be highly monodisperse, with a 5:1 axial ratio, and with a 275 nm long semiaxis. The MNRs are intended to be employed as magnetic hyperthermia and photothermia agents, and as drug vehicles. To achieve a better control of their photothermia response, the particles are coated with a layer of gold, after applying a branched polyethyleneimine (PEI, 2 kDa molecular weight) shell. Magnetic hyperthermia is performed by application of alternating magnetic fields with frequencies in the range 118–210 kHz and amplitudes up to 22 kA/m. Photothermia is carried out by subjecting the particles to a near-infrared (850 nm) laser, and three monochromatic lasers in the visible spectrum with wavelengths 480 nm, 505 nm, and 638 nm. Best results are obtained with the 505 nm laser, because of the proximity between this wavelength and that of the plasmon resonance. A so-called dual therapy is also tested, and the heating of the samples is found to be faster than with either method separately, so the strengths of the individual fields can be reduced. Due to toxicity concerns with PEI coatings, viability of human hepatoblastoma HepG2 cells was tested after contact with nanorod suspensions up to 500 µg/mL in concentration. It was found that the cell viability was indistinguishable from control systems, so the particles can be considered non-cytotoxic in vitro. Finally, the release of the antitumor drug doxorubicin is investigated for the first time in the presence of the two external fields, and of their combination, with a clear improvement in the rate of drug release in the latter case. Full article
(This article belongs to the Special Issue Multifunctional Smart Polymers and Polymeric Composites)
Show Figures

Figure 1

17 pages, 2626 KiB  
Article
Facile Zn and Ni Co-Doped Hematite Nanorods for Efficient Photocatalytic Water Oxidation
by Joan Talibawo, Pannan I. Kyesmen, Marie C. Cyulinyana and Mmantsae Diale
Nanomaterials 2022, 12(17), 2961; https://doi.org/10.3390/nano12172961 - 27 Aug 2022
Cited by 11 | Viewed by 2440
Abstract
In this work, we report the effect of zinc (Zn) and nickel (Ni) co-doping of hydrothermally synthesized hematite nanorods prepared on fluorine-doped tin oxide (FTO) substrates for enhanced photoelectrochemical (PEC) water splitting. Seeded hematite nanorods (NRs) were facilely doped with a fixed concentration [...] Read more.
In this work, we report the effect of zinc (Zn) and nickel (Ni) co-doping of hydrothermally synthesized hematite nanorods prepared on fluorine-doped tin oxide (FTO) substrates for enhanced photoelectrochemical (PEC) water splitting. Seeded hematite nanorods (NRs) were facilely doped with a fixed concentration of 3 mM Zn and varied concentrations of 0, 3, 5, 7, and 9 mM Ni. The samples were observed to have a largely uniform morphology of vertically aligned NRs with slight inclinations. The samples showed high photon absorption within the visible spectrum due to their bandgaps, which ranged between 1.9–2.2 eV. The highest photocurrent density of 0.072 mA/cm2 at 1.5 V vs. a reversible hydrogen electrode (RHE) was realized for the 3 mM Zn/7 mM Ni NRs sample. This photocurrent was 279% higher compared to the value observed for pristine hematite NRs. The Mott–Schottky results reveal an increase in donor density values with increasing Ni dopant concentration. The 3 mM Zn/7 mM Ni NRs sample produced the highest donor concentration of 2.89 × 1019 (cm−3), which was 2.1 times higher than that of pristine hematite. This work demonstrates the role of Zn and Ni co-dopants in enhancing the photocatalytic water oxidation of hematite nanorods for the generation of hydrogen. Full article
(This article belongs to the Topic New Materials and Advanced Applications in Photocatalysis)
Show Figures

Graphical abstract

17 pages, 4624 KiB  
Article
Synthesis and Characterization of Hematite-Based Nanocomposites as Promising Catalysts for Indigo Carmine Oxidation
by Andrei Cristian Kuncser, Arpad Mihai Rostas, Rodica Zavoianu, Octavian Dumitru Pavel, Ioana Dorina Vlaicu, Mihaela Badea, Daniela Cristina Culita, Alina Tirsoaga and Rodica Olar
Nanomaterials 2022, 12(14), 2511; https://doi.org/10.3390/nano12142511 - 21 Jul 2022
Cited by 7 | Viewed by 2465
Abstract
The hematite-based nanomaterials are involved in several catalytic organic and inorganic processes, including water decontamination from organic pollutants. In order to develop such species, a series of bimetallic hematite-based nanocomposites were obtained by some goethite composites-controlled calcination. Their composition consists of various phases [...] Read more.
The hematite-based nanomaterials are involved in several catalytic organic and inorganic processes, including water decontamination from organic pollutants. In order to develop such species, a series of bimetallic hematite-based nanocomposites were obtained by some goethite composites-controlled calcination. Their composition consists of various phases such as α-FeOOH, α-Fe2O3 or γ-Fe2O3 combined with amorphous (Mn2O3, Co3O4, NiO, ZnO) or crystalline (CuO) oxides of the second transition ion from the structure. The component dimensions, either in the 10–30 or in the 100–200 nm range, together with the quasi-spherical or nanorod-like shapes, were provided by Mössbauer spectroscopy and powder X-ray diffraction as well as transmission electron microscopy data. The textural characterization showed a decrease in the specific area of the hematite-based nanocomposites compared with corresponding goethites, with the pore volume ranging between 0.219 and 0.278 cm3g−1. The best catalytic activity concerning indigo carmine removal from water in hydrogen peroxide presence was exhibited by a copper-containing hematite-based nanocomposite sample that reached a dye removal extent of over 99%, which correlates with both the base/acid site ratio and pore size. Moreover, Cu-hbnc preserves its catalytic activity even after four recyclings, when it still reached a dye removal extent higher than 90%. Full article
Show Figures

Graphical abstract

12 pages, 4864 KiB  
Article
Boosting Electrochemical Performance of Hematite Nanorods via Quenching-Induced Alkaline Earth Metal Ion Doping
by Qin Chen, Yanan Chong, Mumin Rao, Ming Su and Yongcai Qiu
Processes 2021, 9(7), 1102; https://doi.org/10.3390/pr9071102 - 24 Jun 2021
Cited by 3 | Viewed by 1987
Abstract
Ion doping in transition metal oxides is always considered to be one of the most effective methods to obtain high-performance electrochemical supercapacitors because of the introduction of defective surfaces as well as the enhancement of electrical conductivity. Inspired by the smelting process, an [...] Read more.
Ion doping in transition metal oxides is always considered to be one of the most effective methods to obtain high-performance electrochemical supercapacitors because of the introduction of defective surfaces as well as the enhancement of electrical conductivity. Inspired by the smelting process, an ancient method, quenching is introduced for doping metal ions into transition metal oxides with intriguing physicochemical properties. Herein, as a proof of concept, α-Fe2O3 nanorods grown on carbon cloths (α-Fe2O3@CC) heated at 400 °C are rapidly put into different aqueous solutions of alkaline earth metal salts at 4 °C to obtain electrodes doped with different alkaline earth metal ions (M-Fe2O3@CC). Among them, Sr-Fe2O3@CC shows the best electrochemical capacitance, reaching 77.81 mF cm−2 at the current of 0.5 mA cm−2, which is 2.5 times that of α-Fe2O3@CC. The results demonstrate that quenching is a feasible new idea for improving the electrochemical performances of nanostructured materials. Full article
(This article belongs to the Special Issue Application of Metal-Based Nanoparticles in Electrochemical Systems)
Show Figures

Figure 1

12 pages, 3330 KiB  
Article
Effects of In Situ Co or Ni Doping on the Photoelectrochemical Performance of Hematite Nanorod Arrays
by Feng Cheng and Xiuwei Li
Appl. Sci. 2020, 10(10), 3567; https://doi.org/10.3390/app10103567 - 21 May 2020
Cited by 9 | Viewed by 3426
Abstract
Co-doped and Ni-doped hematite (α-Fe2O3) nanorod arrays were prepared on fluorine-doped tin oxide (FTO) conductive glass via aqueous chemical growth, in which the doping and the formation of nanorods occurred simultaneously (i.e., in situ doping). These samples were characterized [...] Read more.
Co-doped and Ni-doped hematite (α-Fe2O3) nanorod arrays were prepared on fluorine-doped tin oxide (FTO) conductive glass via aqueous chemical growth, in which the doping and the formation of nanorods occurred simultaneously (i.e., in situ doping). These samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet (UV)–visible spectrophotometry, linear sweep voltammetry and Mott–Schottky (M–S) measurement. Results showed that the introduction of 5% Co or Ni into α-Fe2O3 (the molar ratio of dopant to Fe is 1:20) did not change its crystal phase, morphology, energy gap and flat band potential. Both the undoped and the doped α-Fe2O3 showed a direct band gap of 2.24 eV, an indirect band gap of 1.85 eV, and a flat band potential of −0.22 V vs. saturated calomel electrode (SCE). At an applied potential of 0.2 V vs. SCE, the Co-doped and the Ni-doped α-Fe2O3 exhibited a photocurrent of 1.28 mA/cm2 and 0.79 mA/cm2, respectively, which were 2.1 times and 1.3 times that of the undoped α-Fe2O3. After the Co or Ni doping, the charge carrier concentration increased from 1.65 × 1025 m−3 to 3.74 × 1025 m−3 and 2.50 × 1025 m−3, respectively. Therefore, the increase in the photocurrent of the doped α-Fe2O3 was likely attributed to their enhanced conductivity. Full article
Show Figures

Figure 1

14 pages, 3447 KiB  
Article
Fe2O3 Blocking Layer Produced by Cyclic Voltammetry Leads to Improved Photoelectrochemical Performance of Hematite Nanorods
by Mahshid Poornajar, Nhat Truong Nguyen, Hyo-Jin Ahn, Markus Büchler, Ning Liu, Stepan Kment, Radek Zboril, Jeong Eun Yoo and Patrik Schmuki
Surfaces 2019, 2(1), 131-144; https://doi.org/10.3390/surfaces2010011 - 19 Feb 2019
Cited by 13 | Viewed by 5512
Abstract
Hematite is a low band gap, earth abundant semiconductor and it is considered to be a promising choice for photoelectrochemical water splitting. However, as a bulk material its efficiency is low because of excessive bulk, surface, and interface recombination. In the present work, [...] Read more.
Hematite is a low band gap, earth abundant semiconductor and it is considered to be a promising choice for photoelectrochemical water splitting. However, as a bulk material its efficiency is low because of excessive bulk, surface, and interface recombination. In the present work, we propose a strategy to prepare a hematite (α-Fe2O3) photoanode consisting of hematite nanorods grown onto an iron oxide blocking layer. This blocking layer is formed from a sputter deposited thin metallic iron film on fluorine doped tin oxide (FTO) by using cyclic voltammetry to fully convert the film into an anodic oxide. In a second step, hematite nanorods (NR) are grown onto the layer using a hydrothermal approach. In this geometry, the hematite sub-layer works as a barrier for electron back diffusion (a blocking layer). This suppresses recombination, and the maximum of the incident photon to current efficiency is increased from 12% to 17%. Under AM 1.5 conditions, the photocurrent density reaches approximately 1.2 mA/cm2 at 1.5 V vs. RHE and the onset potential changes to 0.8 V vs. RHE (using a Zn-Co co-catalyst). Full article
Show Figures

Graphical abstract

Back to TopTop