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Abstract: Hematite is a low band gap, earth abundant semiconductor and it is considered to be a
promising choice for photoelectrochemical water splitting. However, as a bulk material its efficiency is
low because of excessive bulk, surface, and interface recombination. In the present work, we propose
a strategy to prepare a hematite (α-Fe2O3) photoanode consisting of hematite nanorods grown onto
an iron oxide blocking layer. This blocking layer is formed from a sputter deposited thin metallic
iron film on fluorine doped tin oxide (FTO) by using cyclic voltammetry to fully convert the film
into an anodic oxide. In a second step, hematite nanorods (NR) are grown onto the layer using a
hydrothermal approach. In this geometry, the hematite sub-layer works as a barrier for electron
back diffusion (a blocking layer). This suppresses recombination, and the maximum of the incident
photon to current efficiency is increased from 12% to 17%. Under AM 1.5 conditions, the photocurrent
density reaches approximately 1.2 mA/cm2 at 1.5 V vs. RHE and the onset potential changes to 0.8 V
vs. RHE (using a Zn-Co co-catalyst).

Keywords: hematite; cyclic voltammetry; photoelectrochemical performance; oxygen evolution
reaction (OER) catalyst; nanorods

1. Introduction

Photoelectrochemical (PEC) solar energy conversion (mimicking artificial photosynthesis) has
been investigated for several decades [1]. Many metal oxide semiconductors such as TiO2, WO3 and
Fe2O3 have been intensively studied for photoelectrochemical applications in order to generate
hydrogen from water [2–6]. Hematite (α-Fe2O3) as an n-type semiconductor has inherent advantages
for a use as a photoanode in solar water splitting. Hematite has a narrow band gap (2.1 eV) that can use
a large portion of the visible light region of the solar spectrum. It also has a valence band edge position
that enables oxygen evolution, i.e., it is situated, in energy, anodic to the O2−/O2 redox potential.
Hematite is abundant in nature, of low cost, it is stable and provides environmental compatibility [7,8].
Despite the promising characteristics, hematite bulk electrodes have a low PEC performance, which
is caused by a low hole diffusion length and a hampered hole transfer to an aqueous electrolyte.
To illustrate this, the light penetration depth in α-Fe2O3 is about 118 nm at λ = 550 nm [9]. However,
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the hole diffusion length of hematite is only about 2–4 nm [10]. Therefore, most holes recombine before
they reach the surface, i.e., only the holes which are created within the hole diffusion length near
the electrolyte interface can trigger a water oxidation reaction [11]. It should be also noted that the
conduction band edge of hematite is lower than the H+/H2 redox potential, hence direct photocatalysis
is not possible, and external bias and a counter electrode are needed for hydrogen evolution [12,13].

To tackle the problem of the low hole diffusion length, many kinds of nanostructures have been
successfully used, such as nanotubes [14,15], nanoflakes [16,17], nanobelts [18], nanowires [19,20],
nanocorals [21] and nanorods [22]. In these 1-dimensional (1D) nanostructures, the light absorption
length can be tuned by the length of the nanostructure, while the hole diffusion distance to the surface
is short enough for holes to reach the surface. Moreover, electrons can be transported directly to the
back contact. For many 1D hematite structures their basal planes are oriented perpendicularly to the
substrate, which is beneficial for a charge transfer to the substrate [18,23].

A large variety of different synthesis procedures have been used for preparing hematite
nanostructures. One approach is anodization which allows synthesizing self-organizing nanostructures,
such as nanotubes, on a Fe metal substrate [24–27]. Another method is thermal oxidation of iron, which
is simple and cheap [28,29], and where hematite nanowhiskers and nanowires can be grown from
metal substrates. However, in all these procedures, where iron foils are used as a substrate, during
a subsequent annealing step in air, sub-oxides—namely Fe3O4—are produced at the metal/oxide
interface. This Fe3O4 interface layer is highly detrimental for the charge transfer to the substrate.
One way to overcome this problem is growing full hematite nanostructures on a FTO substrate, using
for instance a hydrothermal method [30–34]. As here no metallic Fe is used, undesired iron oxide
phases cannot be formed upon annealing under the hematite nanostructure.

Usually pristine hematite shows a high onset potential for water oxidation. The onset potential
can be reduced by adding a catalyst to the surface of the sample. For example Zn-Co layered double
hydroxide (LDHs) have been considered as an excellent OER catalyst [35].

One challenge of using bare FTO as a substrate for the hydrothermal growth of hematite nanorods
is that in the spaces between the nanorods interfacial recombination can take place, since there is the
possibility of electron back flow into the electrolyte on the none-covered area, i.e., on FTO directly
exposed to the electrolyte [36–38]. There have been some efforts for suppressing the back injection
of electrons, such as introducing blocking layers between hematite and FTO substrate [39]. Such a
blocking layer should be thin enough to enable electron tunneling from hematite nanorods to the
FTO as illustrated in Figure 1. As an example, Hisatomi et al. reported a 2 nm Nb2O5 buffer layer
between hematite and the FTO substrate to reduce recombination at the interface of the semiconductor
and the substrate [40]. Abel et al. [41] successfully investigated thin films (10–20 nm) of TiO2 on FTO.
They investigated hematite thin films made by a successive ionic layer adsorption and reaction (SILAR)
method, with and without TiO2 underlayer on the FTO. In this work, by annealing the samples at
775 ◦C, the onset potential in J-V curve of hematite with TiO2 layer shifts to more positive potential,
and the current density increases from 0.21 mA/cm2 to 0.35 mA/cm2 at 1.4 V vs. RHE. Feriel et al.
electrodeposited 40 nm to 60 nm hematite on FTO, underneath a hydrothermally fabricated hematite
photoanode, and found an increase in the photoelectrochemical properties [42]. Cho et al. added 40 nm
dense layer of different materials, such as SnO2 and Fe2O3-Ti, between hematite and the FTO substrate,
which shifted the dark current onset potential to more positive values and also increased the current
density [36]. Liang et al. showed that for hematite layers prepared by spray pyrolysis method the
photocurrent density can be enhanced to 0.37 mA/cm2 at 1.23 V vs. RHE using 5 nm SnO2 interfacial
layer between hematite and FTO [43]. Hisatomi et al. have investigated ultra-thin layer (of Ga2O3

between hematite and FTO prepared by ALD). For a 2 nm Ga2O3 layer and a 25 nm hematite layer
the photocurrent density was improved from 0.2 to 0.4 mA/cm2 at 1.23 V vs. RHE [44]. Within the
present work, we describe a novel form of establishing a fully adjustable blocking layer of hematite on
FTO. For this, we sputtered a thin metallic iron layer on FTO and then converted this layer fully to
FeOOH by an optimized cyclic voltammetry protocol [45]. This layer then can be annealed to obtain
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a pure thin hematite layer on FTO. Afterwards, Fe2O3 nanorods can be grown on the substrate by a
hydrothermal procedure. We show that such nanostructured surfaces provide higher photocurrents
than the same nanostructures without blocking layers. The photoelectrochemical properties can be
further improved by decorating the hematite nanostructure with Zn-Co LDH, yielding a plateau
photocurrent at 1.2 mA/cm2 at 1.5 V and an onset potential at 0.8 V vs. RHE.
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Figure 1. Schematic of the electron back transfer pathway and the effect of blocking layer on
suppressing electron back transfer and recombination.

2. Materials and Methods

2.1. Materials Fabrication

The fabrication process of the hematite photoanodes is schematically illustrated in Figure 2. First,
a layer of metallic Fe was sputter-deposited on FTO. Iron films with various thicknesses were deposited
by DC pulsed magnetron sputtering. A 3” iron target (purity 99%, Lesker) and argon atmosphere were
used as the source of iron and working gas, respectively. The films were deposited on FTO coated
glass substrates (Solaronix). Before the deposition, the samples were cleaned by rinsing the bare FTO
substrates in an ultrasound bath in a sequence of acetone, ethanol and distilled water for 10 min for
each step. The substrates were then dried by a nitrogen flow. The samples were placed in an ultra-high
vacuum chamber on a rotating substrate holder. A combination of rotary and turbomolecular pumps
evacuated the chamber to the base pressure of 10 × e−5 Pa. The working pressure during the deposition
was set to 0.9 Pa by the flow rate of Ar = 30 sccm. The deposition of iron was carried out with the
applied DC power of 650 W using a pulsed mode with the pulse frequency of 100 Hz and duty cycle of
1 %. The deposition typically lasted 30 min.

The metallic layer was converted to FeOOH by cyclic voltammetry (see details below) and
subsequently further oxidized to hematite by annealing at 400 ◦C for 1 h in air. Onto this surface,
hematite nanorods were grown by a hydrothermal procedure described below. Subsequently the entire
structure was annealed at 800 ◦C for 15 min to convert the as-synthesized material consisting of iron
oxy-hydroxide into hematite.

Conversion of the metallic sputter-deposited thin layer into an oxide was carried out in 0.1 M
NaOH (reagent grade) with pH 13 at the room temperature. The electrolyte was continuously deaerated
by nitrogen bubbling. The solution was stirred using a magnet stirrer to remove the dissolution
products from the vicinity of the electrode. The potential was measured against a Ag/AgCl reference
electrode and a platinum wire was used as a counter electrode. Cyclic voltammetry was carried out
using a Zahner IM6 system (Zahner Elektrik, Kronach, Germany) in a potential window from −1.256 V
vs. Ag/AgCl to +0.6 V vs. Ag/AgCl with a sweep rate of 5 mV/s. After the CV treatment, the samples
were annealed at 400 ◦C in air for 1 h to convert the FeOOH layer formed during polarization to
α-Fe2O3 (the blocking layer). For the hydrothermal synthesis procedure, iron chloride hexahydrate
(FeCl3·6H2O) and titanium chloride (TiCl3) were used as reagents. FTO which was coated with the
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hematite blocking layer as well as bare cleaned pieces of FTO glass substrate were put into a cap sealed
glass bottle which was filled with 0.02 mL of 150 M FeCl3·6H2O aqueous solution mixed with 8 µL
of TiCl3 and placed into the oven at 100 ◦C for 1, 3 and 9 h. Subsequently, a yellowish layer of iron
oxyhydroxide (ß-FeOOH) film was grown on the substrate. The samples were washed with DI water
to remove all residuals, dried in nitrogen stream, and annealed at 800 ◦C for 15 min.Surfaces 2019, 2 FOR PEER REVIEW  4 
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coated FTO substrate.

2.2. Zn-Co LDH Treated Samples

Zn-Co layered double hydroxides were prepared as described in an earlier work [35]. First,
0.3 mmol cobalt nitrate hexahydrate and 0.15 mmol zinc nitrate hexahydrate were added to 2.4 mmol
urea and instantly dissolved in 10 mL DI water. Then, the solution was mixed with 40 mL ethylene
glycol. Subsequently, the above solution was placed into a microwave (750 W) to be irradiated for
10 min with 30 s on and off interval, and then cooled naturally. After washing and drying, the product
was dispersed in deionized water and sonicated for 10 min. Finally, the FTO samples without and with
the blocking hematite layer which were covered by nanorod structure were immersed in the solution
for 10 min, washed with DI water, and dried by nitrogen.

2.3. Morphological and Structural Characterization

A field emission scanning electron microscope (FE-SEM, Hitachi S4800, Tokyo, Japan) was used
to investigate the morphology of the as-synthesized materials. The film thicknesses were measured
using cross sectional imaging by SEM. X-ray diffraction patterns (XRD) were measured using X’pert
Philips MPD diffractometer with a Panalytical X’celerator detector, Malvern Panalytical (Almelo,
The Netherlands) to examine the structural properties of the materials. The measurements were carried
out using graphite-monochromized CuKα radiation (wavelength 1.54056 Å). X-Ray photoelectron
spectroscopy (XPS, PHI 5600, Eden Prairie, MN, USA) was used for analysis of the chemical states
and elemental composition of the samples. Additional compositional evaluation was carried out by
time-of-flight secondary-ion mass spectrometer TOF-SIMS (ToF.SIMS 5 instrument), Ion-ToF GmbH,
Münster, Germany. Positive SIMS spectra were taken.

2.4. Photoelectrochemical (PEC) Measurements

Photoelectrochemical measurements were carried out in 1 M KOH (pH 13.5) solution as an
electrolyte using a solar simulator source (300 W Xe with optical filter) providing AM 1.5 (100 mW/cm2)
illumination. A three-electrode cell was used with the FTO/hematite sample as a photoanode (working
electrode), Ag/AgCl (3 M KCl) as a reference electrode and a platinum foil as a counter electrode.
Photocurrent versus voltage (I-V) curves were recorded by scanning the potential from −0.4 to 0.7 V
(vs. Ag/AgCl) at a scan rate of 2 mV/s using a Jaissle IMP 88 PC potentiostat. The light was chopped
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off and on every 20 mV. The recorded potentials versus Ag/AgCl were converted to the reversible
hydrogen electrode (RHE) scale using the following equation:

ERHE = EAg/AgCl + 0.059 pH + EAg/AgCl,

where EAg/AgCl is the measured potential, and EAg/AgCl = 0.209 V at 25 ◦C for an Ag/AgCl electrode
in 3 M KCl.

Incident photocurrent conversion efficiencies (IPCE) were measured at 0.5 V vs. Ag/AgCl in
1 M KOH recorded in 5 nm steps from 700 to 300 nm. Electrochemical impedance spectroscopy
(EIS) measurements were performed from 100 KHz to 0.01 Hz at 1.23 V vs. RHE with amplitude of
10 mV using 369 nm LED light source at the 3-electrode set-up. Intensity-modulated photocurrent
spectroscopy (IMPS) measurements were performed with 369 nm LED light in 1 M KOH.

3. Results and Discussion

Figure 3a shows cyclic potential scans measured on FTO coated with a 30 nm thin iron film for 10,
20 and 30 cycles. The CV curves were obtained by polarizing the working electrode in the potential
window of water stability in 0.1 M NaOH, i.e., the window was set to minimize H2 and O2 evolution.
The mechanism of oxide film formation on metallic iron in alkaline solutions by cyclic voltammetry is
well described in literature [45]. Starting from the open circuit potential (OCP) in the anodic direction,
as the potential reaches peak (I) and (II), oxidation of the metallic iron takes place with formation of
Fe(III) oxide (peak II). In the cathodic direction this oxide layer is converted to a Fe(II) oxyhydroxide
layer (peak III). This Fe(II) oxyhydroxide layer is porous and thus allows in the next anodic cycle
again the formation of an anodic high field oxide film underneath the hydroxide [45], i.e., in the
subsequent cycle in the anodic direction, Fe(II) oxide is formed underneath the porous oxyhydroxide
layer (at peak I). When the potential reaches peak II, Fe(II) is oxidized to Fe(III), and thus the oxide
layer is thickened by one increment. In the subsequent cycle in the cathodic direction, the entire
Fe(III) oxide layer is reduced to porous Fe(II) oxide/hydroxide. Thus, with each cycle, a steadily
increasing thickness of a porous Fe-oxyhydroxide is formed. This process is well documented by in
situ XANES measurements that not only follow the red/ox switching but also confirm thickening of
the oxide/hydroxide film in each cycle [45].

A series of experiments were carried out with initial Fe layers of different thickness. For our
purpose the best results were obtained for layers that were 30 nm thick and cycled 20 times. While a
full conversion of the samples is reached between 20 to 30 cycles, the best photocurrent results were
obtained for samples cycled 20 times (see Figure 3b), i.e., for samples that had a very thin remaining
Fe layer on the surface. One may note that during the cycling, the anodic and cathodic peaks shift to
higher and lower potentials, respectively. This can be ascribed to thickening of the film, resulting in an
increase of the ohmic drop [46,47].

The CV measurements were carried out in the potential range of water stability. In the
literature, by polarizing the iron sheet with a starting potential of −1.4 V. SCE (i.e., −1.444 V vs.
Ag/AgCl), extensive hydrogen evolution occurs and a second cathodic peak in the CV appears.
In other words, if the potential at the surface of the layer reaches the hydrogen evolution equilibrium
potential, hydrogen is formed [48]. To suppress hydrogen evolution, the potential scans were started
at −1.256 V [49]. Strong hydrogen evolution during cycling can lead to layer detachment from
the substrate.

Figure 3b shows photocurrent voltage curves of different thick oxide layers after annealing at
400 ◦C in air for 1 h. The reason for the highest photocurrent density for the 20 times cycled sample
is that for 30 cycles, adhesion of the layer to the substrate is lost during annealing. In other words,
the thin metal layer remaining after 20 cycles provides after thermal conversion an optimum adhesion
layer, without blocking charge transfer to the substrate.
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Figure 3. (a) Cyclic voltammograms of Fe sputtered layer in 0.1 M NaOH (sweep rate 5 mV/s),
(b) J-V curves with chopped light illumination for hematite thin oxide film prepared with 10, 20 and
30 CV cycles.

Figure 4a and b show the top view and cross section of the optimized sputtered iron layer used
in this work. As seen in Figure 4b, the thickness of the sputtered iron layer is initially about 30 nm.
After conversion of this layer, the layer consists of dense iron-oxyhydroxide nano platelet structure
with a thin underneath compact layer. The 93 nm nanoplatelet structure is vertically aligned on the
substrate. This layer was then converted to hematite by annealing at 400 ◦C for 1 h in air. The platelet
structure with an underneath compact layer was stable after annealing Figure 4c,d, the compact layer
was converted to compact oxide. This annealed layer was then used as the hematite blocking layer.

As shown in Figure 4f, hematite nanorods could be vertically grown on the blocking layer
by the solution-based hydrothermal method described in the experimental section. The layer was
subsequently annealed at 800 ◦C for 15 min to convert the FeOOH (of the rods) to hematite. Figure 4f
shows that after 3 h of hydrothermal process, the nanorods are approximately 250 nm in length.
A hydrothermal layer that was grown under the same conditions on plain FTO showed rods of 220 nm
in length. This sample was taken as a reference sample in further experiments. The thickness of
the nanorod layers can be changed by changing the nanorod growing time. As shown in Figure S1
(supporting information) and Figure 4f, the nanorods grown on the hematite blocking layer for 1, 3
and 9 h have average lengths of 180, 220 and 320 nm, respectively.

Figure 5 shows XRD patterns of the optimized blocking layers which were prepared by cyclic
voltammetry before and after annealing, and the XRD pattern with hydrothermal nanorods before
and after annealing. The XRD pattern of the sputtered iron sample after optimized cyclic voltammetry
shows characteristic peaks of FeOOH (Figure 5a). After annealing for 1 h at 400 ◦C in air, the pattern
shows only characteristic peaks of hematite. This confirms the complete conversion of the FeOOH layer,
which was formed by cyclic voltammetry, to hematite. The (110) hematite diffraction peak at 2θ = 35.8◦

with highest intensity indicates that the hematite nanostructure has preferential growth orientation
in the [110] direction [50]. According to previous reports, hematite has anisotropic conductivity with
a conductivity along [110] direction that is 4 orders of magnitude higher than in the orthogonal
plane, which makes charge transport and charge collection easier for these rods [51]. In other words,
the preferential orientation of hematite shows better photocurrent because charge can be extracted
more facile [11]. There is no difference between crystal structure of samples with and without blocking
layer. The peaks at 33.17◦ and 24.2◦ are related to the underneath oxide layer.
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shows the high resolution XPS spectra for Fe for the above mentioned samples. Both samples show 

Figure 4. Top-view and cross sectional SEM images of (a,b) sputtered Fe layer, (c,d) hematite blocking
layer, (e,f) hematite nanorods grown for 3 h with blocking layer, and (g,h) hematite nanorods grown
for 3 h without blocking layer.

XPS survey spectrum in Figure S2 for annealed hydrothermal nanorods with and without blocking
layer show that the structures are composed of Fe and O, with small traces of C. Figure 5b shows
the high resolution XPS spectra for Fe for the above mentioned samples. Both samples show two
distinct Fe 2p1/2 and Fe 2p3/2 peaks at 724.5 and 711.1 eV, respectively [52]. The satellite peak at 720 eV
is characteristic of Fe3+ in Fe2O3 [53]. Figure 5c shows the high-resolution O1s spectra: the peak at
530 eV corresponds to oxygen in the oxide structure, whereas the peak at 533 eV represents surface
hydroxyl groups [54]. Hence, nanorods grown on the blocking layer samples show a higher amount of
OH− species than the reference samples. Figure S3a,b show XPS spectra of Zn and Co in ZnCo-LDH,
respectively. ZnCo-LDH shows a Zn 2p3/2 peak at 1021.7 eV, a Co 2p1/2 peak at 797.7 eV and a Co
2p3/2 peak at 782.1 eV, respectively in line with literature [55,56].

To additionally confirm the presence of ZnCo-LDH on hematite, we acquired TOF-SIMS spectra.
From Figure S4, clearly Zn and Co peaks on the hematite nanorods can be identified.

The photocurrent response was measured in a 3-electrode cell using Ag/AgCl as a reference
electrode in 1 M KOH under chopped solar simulator conditions. Figure 6a illustrates the photocurrent
potential (J-V) response for hematite nanorods without blocking layer and without (H3) and with
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Zn-Co OER catalyst (H3, Zn-Co), with blocking layer (BH3) and with both blocking layer and Zn-Co
OER catalyst (BH3, Zn-Co).
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(c) XPS O 1s spectra of nanorods without (H) and with blocking layer (BH).

Hydrothermal growth time for all the hematite nanorods for these measurements was 3 h.
The photocurrent-voltage curves show an onset potential (VON) of 0.9 and 0.86V vs. RHE for the BH3
and H3 photoanodes, respectively. This undesired anodic shift for the samples with the blocking layer
(BH3) is caused by the charge recombination in the hematite blocking layer at low potentials [57].
This undesired effect can be overcome using an O2 evolution catalyst, i.e., the onset potential could be
shifted to a more cathodic potential (to 0.8 V vs. RHE) using a Zn-Co OER catalyst. The Zn-Co catalyst
on control hematite nanorods (H3, Zn-Co) also shows the about 200 mV cathodic shift, similar to the
(BH3/Zn-Co) photoanode as shown in Figure 6a.

However, the photocurrent plateau increases from 1 mA/cm2 to 1.2 mA/cm2 at 1.5 V vs. RHE
for samples that carry a blocking layer. The high spikes at lower potentials also indicate that a better
onset potential can be exploited when using an OER catalyst, as evidenced for curves measured using
a Co-Zn LDH catalyst decoration.

One possible reason for increasing photocurrent characteristics of samples with blocking layer is
that this layer becomes active as a hematite layer at higher onset potentials. Through the depletion layer,
holes either trap in surface states or participate in water oxidation reaction. So in the synthesized layer,
electron-hole recombination competes with charge separation and at low external bias the probability
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of recombination is increased. By increasing the applied potential, this undesired recombination will
be decreased and the beneficial effect dominates [52]. Evidently, by using the blocking layer, less FTO
is exposed to the electrolyte and therefore less reaction sites for electron back injection are available,
and also the dark (leakage) current is decreased [36].
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Figure 6. J-V curves with chopped light illumination measured at 0.6 to 1.7 V vs. RHE for: (a) reference
sample, hematite nanorods (grown for 3 h) without blocking layer without (H) and with Zn-Co (H,
ZnCo) and hematite nanorods (grown for 3 h) with blocking layer without (BH) and with Zn-Co (BH,
ZnCo). (b) hematite nanorods with blocking layer grown for 1 h, 3 h and 9 h. (c) IPCE spectra for
hematite nanorods grown for 1, 3 and 9 h and with Zn-Co decoration measured at 1.5 V vs. RHE,
band gap determination from a (iphhv)1/2vs. photon energy (hv) plot (inset). (d) transient photocurrent
density of hematite with (BH) and without (H) blocking layer as a function of time at an applied bias of
1.5 V vs. RHE at 330 nm wavelength.

Figure 6b shows the photocurrent-potential curves for different length of hematite nanorods
grown on blocking layer samples; hydrothermal growth times of hematite nanorods for this experiment
were 1 h (BH1), 3 h (BH3) and 9 h (BH9). The nanorod samples prepared for 3 and 9 h show a better
plateau current than the one prepared for 1 h. This directly correlates to light that can be absorbed by
using longer nanorods [58]. However, the beneficial effect of increasing the length of the nanorods is
limited, as hematite has a non-sufficient electrical conductivity.

In contrast to samples carrying a blocking layer, nanorod samples that were prepared for 1, 3 and
9 h on bare FTO, the plateau photocurrent did not change considerably by increasing the growth time
(see Figure S5).

The presence of spikes in I-V curve is related to the recombination owing to the slow extraction
of electron hole pairs (EHPs). Since the photogenerated EHPs can be quickly extracted by strong
band-bending generated at high potential, the recombination of EHPs is suppressed and the magnitude
of photocurrent spikes is diminished [59,60].
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Figure 6c shows the incident photon to current efficiency (IPCE) of for all samples (without and
with blocking layer, Zn-Co decorated, different nanorod lengths) measured at wavelengths from 300 to
700 nm at 1.5 V vs. RHE. The samples with blocking layers show a clear enhancement of the IPCE
from 300 to 600 nm, and the highest IPCE value at 330 nm is about 17%. In comparison, the highest
IPCE value for the hematite photoanodes grown on bare FTO with and without Zn-Co LDH at 330 nm
are about 12%.

The band gap of the samples were obtained by plotting incident electron transition versus
photon energy ( (iphhν)1/2 vs. (hν) ) [61]. As seen in Figure 6c, for all samples the determined
bandgap is ca. 1.9 eV. Figure 6d shows phototransients at 330 nm wavelength. During illumination,
the photogenerated electrons and holes are separated and electron hole pairs recombine. As a result,
transient photocurrent shows decay. At equilibrium (steady state), separation and recombination
stabilize. After switching off the light, recombination occurs [54]. The spike which is observed
when the light is switched off is related to back transfer of electrons from FTO to hematite [62].
Clearly, for the hematite blocking layer samples, recombination and electron back transfer are
considerably suppressed.

Electrochemical impedance spectroscopy (EIS) was employed to investigate the kinetics of charge
transport of hematite photoanodes grown on the blocking layer and decorated with the co-catalyst
by the Zn-Co treatment in comparison to the reference sample; Nyquist curves of EIS experiments
under illumination are shown in Figure 7a. Clearly, the charge transfer resistance for the blocking layer
hematite photoanode with the Zn-Co catalyst is reduced as compared to the reference sample [53,63].
IMPS test was carried out to investigate charge transport behavior. The electron transient time can
be calculated from semicircles which show imaginary current versus real current [54]. The transport
time constant can be associated with photogenerated electrons transferring from the electrode to the
back contact. As seen in Figure 7b, faster electron transport kinetics are observed for the blocking layer
hematite photoanode with the Zn-Co catalyst, than for the reference sample (nanorods grown on plain
FTO without the blocking layer and no co-catalyst decoration).Surfaces 2019, 2 FOR PEER REVIEW  11 
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4. Conclusions

The work demonstrates a new approach to fabricate a nanostructured hematite photoelectrode
with a blocking layer on FTO, where holes can recombine with back injected electrons before reaching
the semiconductor- electrolyte interface. The layer of hematite that covers the FTO acts as a blocking
layer to reduce the back injection of electrons from the FTO. Therefore, holes can reach the surface
more efficiently and participate in oxygen evolution reaction [36,42,64,65]. Here we use a thin film of
metallic iron coated on FTO that can be fully converted into an iron oxide/hydroxide layer by cyclic



Surfaces 2019, 2 141

voltammetry. This oxide/hydroxide can be further converted to a plain hematite layer. This layer acts
as a blocking layer in the hematite-anostructure-photoanode. We have demonstrated that FTO with
a blocking layer still serves as an efficient substrate for growing hematite nanorods. After such an
electrode is additionally modified wit Zn-Co as oxygen evolution reaction catalyst, an onset potential
of 0.8 V vs. RHE is found and the photoanode showed a photocurrent of 1.2 mA/cm2 at 1.5 V vs. RHE
under AM 1.5 illumination.
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Figure S1: Cross sectional SEM images of 1 h (a) and 9 h (b) prepared hematite nanorods on blocking layer.
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of hematite nanorods grown on bare FTO (red line, H) and hematite nanorods grown on the blocking layer covered
FTO (black line, BH).; Figure S3. (a) XPS Zn 2p3/2 spectrum and (b) Co 2p spectrum of ZnCo-LDH. Figure S4.
TOF-SIMS analysis of hematite nanorods (grown for 3 h) without blocking layer (a) with Zn-Co (H, Zn-Co),
(b) without Zn-Co (H, Zn-Co). Figure S5. J-V curves with chopped light illumination for hematite nanorods grown
for 1, 3 and 9 h on bare FTO measured at 0.6 to 1.7 V vs. RHE.
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