Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = heliocentric orbit cranking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1217 KiB  
Article
Optimal Guidance for Heliocentric Orbit Cranking with E-Sail-Propelled Spacecraft
by Alessandro A. Quarta
Aerospace 2024, 11(6), 490; https://doi.org/10.3390/aerospace11060490 - 19 Jun 2024
Cited by 4 | Viewed by 1370
Abstract
In astrodynamics, orbit cranking is usually referred to as an interplanetary transfer strategy that exploits multiple gravity-assist maneuvers to change both the inclination and eccentricity of the spacecraft osculating orbit without changing the specific mechanical energy, that is, the semimajor axis. In the [...] Read more.
In astrodynamics, orbit cranking is usually referred to as an interplanetary transfer strategy that exploits multiple gravity-assist maneuvers to change both the inclination and eccentricity of the spacecraft osculating orbit without changing the specific mechanical energy, that is, the semimajor axis. In the context of a solar sail-based mission, however, the concept of orbit cranking is typically referred to as a suitable guidance law that is able to (optimally) change the orbital inclination of a circular orbit of an assigned radius in a general heliocentric three-dimensional scenario. In fact, varying the orbital inclination is a challenging maneuver from the point of view of the velocity change, so orbit cranking is an interesting mission application for a propellantless propulsion system. The aim of this paper is to analyze the performance of a spacecraft equipped with an Electric Solar Wind Sail in a cranking maneuver of a heliocentric circular orbit. The maneuver performance is calculated in an optimal framework considering spacecraft dynamics described by modified equinoctial orbital elements. In this context, the paper presents an analytical version of the three-dimensional optimal guidance laws obtained by using the classical Pontryagin’s maximum principle. The set of (analytical) optimal control laws is a new contribution to the Electric Solar Wind Sail-related literature. Full article
(This article belongs to the Special Issue Advances in CubeSat Sails and Tethers (2nd Edition))
Show Figures

Figure 1

13 pages, 4349 KiB  
Article
Optimal Trajectories of Diffractive Sail to Highly Inclined Heliocentric Orbits
by Giovanni Mengali and Alessandro A. Quarta
Appl. Sci. 2024, 14(7), 2922; https://doi.org/10.3390/app14072922 - 29 Mar 2024
Cited by 3 | Viewed by 1238
Abstract
Recent literature indicates that the diffractive sail concept is an interesting alternative to the more conventional reflective solar sail, which converts solar radiation pressure into a (deep space) thrust using a thin, lightweight highly reflective membrane, usually metalized. In particular, a diffractive sail, [...] Read more.
Recent literature indicates that the diffractive sail concept is an interesting alternative to the more conventional reflective solar sail, which converts solar radiation pressure into a (deep space) thrust using a thin, lightweight highly reflective membrane, usually metalized. In particular, a diffractive sail, which uses a metamaterial-based membrane to diffract incoming solar rays, is able to generate a steerable thrust vector even when the sail nominal plane is perpendicular to the Sun–spacecraft line. This paper analyzes the optimal transfer performance of a diffractive-sail-based spacecraft in a challenging heliocentric scenario that is consistent with the proposed Solar Polar Imager mission concept. In this case, the spacecraft must reach a near-circular (heliocentric) orbit with a high orbital inclination with respect to the Ecliptic in order to observe and monitor the Sun’s polar regions. Such a specific heliocentric scenario, because of the high velocity change it requires, is a mission application particularly suited for a propellantless propulsion system such as the classical solar sail. However, as shown in this work, the same transfer can be accomplished using a diffractive sail as the primary propulsion system. The main contribution of this paper is the analysis of the spacecraft transfer trajectory using a near-optimal strategy by dividing the entire flight into an approach phase to a circular orbit of the same radius as the desired final orbit but with a smaller inclination, and a subsequent cranking phase until the desired (orbital) inclination is reached. The numerical simulations show that the proposed strategy is sufficiently simple to implement and can provide solutions that differ by only a few percentage points from the optimal results obtainable with a classical indirect approach. Full article
Show Figures

Figure 1

Back to TopTop