Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = headgroup mobility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5178 KB  
Article
Probing Slipids Force Field for Phase Transitions in SOPC Lipid Bilayers with Various Cholesterol Concentrations
by Nikoleta Ivanova and Hassan Chamati
Chemistry 2024, 6(4), 531-545; https://doi.org/10.3390/chemistry6040031 - 29 Jun 2024
Cited by 1 | Viewed by 1552
Abstract
We explore the phase behavior of lipid bilayers containing SOPC (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine) with various molar concentrations (0 mol%, 10 mol% and 30 mol%) of cholesterol. To this end, we performed extensive atomistic molecular dynamics simulations in conjunction with the Slipids force field with optimized [...] Read more.
We explore the phase behavior of lipid bilayers containing SOPC (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine) with various molar concentrations (0 mol%, 10 mol% and 30 mol%) of cholesterol. To this end, we performed extensive atomistic molecular dynamics simulations in conjunction with the Slipids force field with optimized parameters for the headgroups of phospholipids. We computed thermodynamic and structural quantities describing the ordering of the tails, the mobility of the heads and the arrangement of the lipids in the bilayers. We analyzed the behavior of the named quantities over the temperature range between 271 K and 283 K, where the experimentally determined melting temperature, Tm=279 K, lies, as well as at 400 K, which is used as a reference temperature. The obtained results are compared to available experimental data along with the outcome from molecular dynamics simulations of similar phospholipids containing different amounts of cholesterol. In the temperature interval of interest, we found evidence of the occurrence of a thermal-driven phase transition (melting) in both the pure system and the one with the lower concentration of cholesterol, while in the remaining system, the higher amount of cholesterol in the bilayer smears out the transitional behavior. Thus, we demonstrate the ability of the Slipids force field to predict the phase behavior of bilayers of SOPC and SOPC mixed with cholesterol. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

19 pages, 5015 KB  
Article
Cholesterol Content Regulates the Interaction of αA-, αB-, and α-Crystallin with the Model of Human Lens-Lipid Membranes
by Raju Timsina, Preston Hazen, Geraline Trossi-Torres, Nawal K. Khadka, Navdeep Kalkat and Laxman Mainali
Int. J. Mol. Sci. 2024, 25(3), 1923; https://doi.org/10.3390/ijms25031923 - 5 Feb 2024
Cited by 4 | Viewed by 1674
Abstract
α-Crystallin (αABc) is a major protein comprised of αA-crystallin (αAc) and αB-crystallin (αBc) that is found in the human eye lens and works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress. However, with age and cataract [...] Read more.
α-Crystallin (αABc) is a major protein comprised of αA-crystallin (αAc) and αB-crystallin (αBc) that is found in the human eye lens and works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress. However, with age and cataract formation, the concentration of αABc in the eye lens cytoplasm decreases, with a corresponding increase in the membrane-bound αABc. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the role of cholesterol (Chol) and Chol bilayer domains (CBDs) in the binding of αAc, αBc, and αABc to the Chol/model of human lens-lipid (Chol/MHLL) membranes. The maximum percentage of membrane surface occupied (MMSO) by αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trends: MMSO (αAc) > MMSO (αBc) ≈ MMSO (αABc), indicating that a higher amount of αAc binds to these membranes compared to αBc and αABc. However, with an increase in the Chol concentration in the Chol/MHLL membranes, the MMSO by αAc, αBc, and αABc decreases until it is completely diminished at a mixing ratio of 1.5. The Ka of αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trend: Ka (αBc) ≈ Ka (αABc) > Ka (αAc), but it was close to zero with the diminished binding at a Chol/MHLL mixing ratio of 1.5. The mobility near the membrane headgroup regions decreased with αAc, αBc, and αABc binding, and the Chol antagonized the capacity of the αAc, αBc, and αABc to decrease mobility near the headgroup regions. No significant change in membrane order near the headgroup regions was observed, with an increase in αAc, αBc, and αABc concentrations. Our results show that αAc, αBc, and αABc bind differently with Chol/MHLL membranes at mixing ratios of 0 and 0.5, decreasing the mobility and increasing hydrophobicity near the membrane headgroup region, likely forming the hydrophobic barrier for the passage of polar and ionic molecules, including antioxidants (glutathione), creating an oxidative environment inside the lens, leading to the development of cataracts. However, all binding was completely diminished at a mixing ratio of 1.5, indicating that high Chol and CBDs inhibit the binding of αAc, αBc, and αABc to membranes, preventing the formation of hydrophobic barriers and likely protecting against cataract formation. Full article
Show Figures

Figure 1

13 pages, 2824 KB  
Article
Effect of Fusidic Acid and Some Nitrogen-Containing Derivatives on Liposomal and Mitochondrial Membranes
by Mikhail V. Dubinin, Anna I. Ilzorkina, Elena V. Salimova, Manish S. Landage, Ekaterina I. Khoroshavina, Sergey V. Gudkov, Konstantin N. Belosludtsev and Lyudmila V. Parfenova
Membranes 2023, 13(10), 835; https://doi.org/10.3390/membranes13100835 - 20 Oct 2023
Cited by 2 | Viewed by 2455
Abstract
The paper assesses the membranotropic action of the natural antibiotic fusidic acid (FA) and its derivatives. It was found that a FA analogue with ethylenediamine moiety (derivative 2), in contrast to native FA and 3,11-dioxime analogue (derivative 1), is able to increase the [...] Read more.
The paper assesses the membranotropic action of the natural antibiotic fusidic acid (FA) and its derivatives. It was found that a FA analogue with ethylenediamine moiety (derivative 2), in contrast to native FA and 3,11-dioxime analogue (derivative 1), is able to increase the mobility of the lipid bilayer in the zone of lipid headgroups, as well as to induce permeabilization of lecithin liposome membranes. A similar effect of derivative 2 is also observed in the case of rat liver mitochondrial membranes. We noted a decrease in the microviscosity of the mitochondrial membrane and nonspecific permeabilization of organelle membranes in the presence of this agent, which was accompanied by a decrease in mitochondrial Δψ and OXPHOS efficiency. This led to a reduction in mitochondrial calcium retention capacity. The derivatives also reduced the production of H2O2 by mitochondria. The paper considers the relationship between the structure of the tested compounds and the observed effects. Full article
(This article belongs to the Special Issue Function and Malfunction of Ion Channels in Biological Cell Membrane)
Show Figures

Figure 1

22 pages, 2837 KB  
Article
Binding of βL-Crystallin with Models of Animal and Human Eye Lens-Lipid Membrane
by Preston Hazen, Geraline Trossi-Torres, Nawal K. Khadka, Raju Timsina and Laxman Mainali
Int. J. Mol. Sci. 2023, 24(17), 13600; https://doi.org/10.3390/ijms241713600 - 2 Sep 2023
Cited by 4 | Viewed by 1443
Abstract
Several discoveries show that with age and cataract formation, β-crystallin binds with the lens membrane or associates with other lens proteins, which bind with the fiber cell plasma membrane, accompanied by light scattering and cataract formation. However, how lipids (phospholipids and sphingolipids) and [...] Read more.
Several discoveries show that with age and cataract formation, β-crystallin binds with the lens membrane or associates with other lens proteins, which bind with the fiber cell plasma membrane, accompanied by light scattering and cataract formation. However, how lipids (phospholipids and sphingolipids) and cholesterol (Chol) influence β-crystallin binding to the membrane is unclear. This research aims to elucidate the role of lipids and Chol in the binding of β-crystallin to the membrane and the membrane’s physical properties (mobility, order, and hydrophobicity) with β-crystallin binding. We used electron paramagnetic resonance (EPR) spin-labeling methods to investigate the binding of βL-crystallin with a model of porcine lens-lipid (MPLL), model of mouse lens-lipid (MMLL), and model of human lens-lipid (MHLL) membrane with and without Chol. Our results show that βL-crystallin binds with all of the investigated membranes in a saturation manner, and the maximum parentage of the membrane surface occupied (MMSO) by βL-crystallin and the binding affinity (Ka) of βL-crystallin to the membranes followed trends: MMSO (MPLL) > MMSO (MMLL) > MMSO (MHLL) and Ka (MHLL) > Ka (MMLL) ≈ Ka (MPLL), respectively, in which the presence of Chol reduces the MMSO and Ka for all membranes. The mobility near the headgroup regions of the membranes decreases with an increase in the binding of βL-crystallin; however, the decrease is more pronounced in the MPLL and MMLL membranes than the MHLL membrane. In the MPLL and MMLL membranes, the membranes become slightly ordered near the headgroup with an increase in βL-crystallin binding compared to the MHLL membrane. The hydrophobicity near the headgroup region of the membrane increases with βL-crystallin binding; however, the increase is more pronounced in the MPLL and MMLL membranes than the MHLL membrane, indicating that βL-crystallin binding creates a hydrophobic barrier for the passage of polar molecules, which supports the barrier hypothesis in cataract formation. However, in the presence of Chol, there is no significant increase in hydrophobicity with βL-crystallin binding, suggesting that Chol prevents the formation of a hydrophobic barrier, possibly protecting against cataract formation. Full article
Show Figures

Figure 1

13 pages, 1422 KB  
Article
Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions
by Abhinav, Piotr Jurkiewicz, Martin Hof, Christoph Allolio and Jan Sýkora
Biomolecules 2022, 12(12), 1894; https://doi.org/10.3390/biom12121894 - 17 Dec 2022
Cited by 2 | Viewed by 2708
Abstract
Biomembranes, important building blocks of living organisms, are often exposed to large local fluctuations of pH and ionic strength. To capture changes in the membrane organization under such harsh conditions, we investigated the mobility and hydration of zwitterionic and anionic lipid bilayers upon [...] Read more.
Biomembranes, important building blocks of living organisms, are often exposed to large local fluctuations of pH and ionic strength. To capture changes in the membrane organization under such harsh conditions, we investigated the mobility and hydration of zwitterionic and anionic lipid bilayers upon elevated H3O+ and Ca2+ content by the time-dependent fluorescence shift (TDFS) technique. While the zwitterionic bilayers remain inert to lower pH and increased calcium concentrations, anionic membranes are responsive. Specifically, both bilayers enriched in phosphatidylserine (PS) and phosphatidylglycerol (PG) become dehydrated and rigidified at pH 4.0 compared to at pH 7.0. However, their reaction to the gradual Ca2+ increase in the acidic environment differs. While the PG bilayers exhibit strong rehydration and mild loosening of the carbonyl region, restoring membrane properties to those observed at pH 7.0, the PS bilayers remain dehydrated with minor bilayer stiffening. Molecular dynamics (MD) simulations support the strong binding of H3O+ to both PS and PG. Compared to PS, PG exhibits a weaker binding of Ca2+ also at a low pH. Full article
(This article belongs to the Special Issue Proton and Proton-Coupled Transport)
Show Figures

Figure 1

37 pages, 16168 KB  
Review
Chemistry of Lipoquinones: Properties, Synthesis, and Membrane Location of Ubiquinones, Plastoquinones, and Menaquinones
by Margaret M. Braasch-Turi, Jordan T. Koehn and Debbie C. Crans
Int. J. Mol. Sci. 2022, 23(21), 12856; https://doi.org/10.3390/ijms232112856 - 25 Oct 2022
Cited by 11 | Viewed by 3143
Abstract
Lipoquinones are the topic of this review and are a class of hydrophobic lipid molecules with key biological functions that are linked to their structure, properties, and location within a biological membrane. Ubiquinones, plastoquinones, and menaquinones vary regarding their quinone headgroup, isoprenoid sidechain, [...] Read more.
Lipoquinones are the topic of this review and are a class of hydrophobic lipid molecules with key biological functions that are linked to their structure, properties, and location within a biological membrane. Ubiquinones, plastoquinones, and menaquinones vary regarding their quinone headgroup, isoprenoid sidechain, properties, and biological functions, including the shuttling of electrons between membrane-bound protein complexes within the electron transport chain. Lipoquinones are highly hydrophobic molecules that are soluble in organic solvents and insoluble in aqueous solution, causing obstacles in water-based assays that measure their chemical properties, enzyme activities and effects on cell growth. Little is known about the location and ultimately movement of lipoquinones in the membrane, and these properties are topics described in this review. Computational studies are particularly abundant in the recent years in this area, and there is far less experimental evidence to verify the often conflicting interpretations and conclusions that result from computational studies of very different membrane model systems. Some recent experimental studies have described using truncated lipoquinone derivatives, such as ubiquinone-2 (UQ-2) and menaquinone-2 (MK-2), to investigate their conformation, their location in the membrane, and their biological function. Truncated lipoquinone derivatives are soluble in water-based assays, and hence can serve as excellent analogs for study even though they are more mobile in the membrane than the longer chain counterparts. In this review, we will discuss the properties, location in the membrane, and syntheses of three main classes of lipoquinones including truncated derivatives. Our goal is to highlight the importance of bridging the gap between experimental and computational methods and to incorporate properties-focused considerations when proposing future studies relating to the function of lipoquinones in membranes. Full article
(This article belongs to the Special Issue Lipids: From the Structure, Function and Evolution to Applications)
Show Figures

Graphical abstract

20 pages, 2042 KB  
Article
Alpha-Crystallin-Membrane Association Modulated by Phospholipid Acyl Chain Length and Degree of Unsaturation
by Geraline Trossi-Torres, Raju Timsina and Laxman Mainali
Membranes 2022, 12(5), 455; https://doi.org/10.3390/membranes12050455 - 23 Apr 2022
Cited by 9 | Viewed by 3152
Abstract
α-crystallin-membrane association increases with age and cataracts, with the primary association site of α-crystallin being phospholipids. However, it is unclear if phospholipids’ acyl chain length and degree of unsaturation influence α-crystallin association. We used the electron paramagnetic resonance approach to investigate the association [...] Read more.
α-crystallin-membrane association increases with age and cataracts, with the primary association site of α-crystallin being phospholipids. However, it is unclear if phospholipids’ acyl chain length and degree of unsaturation influence α-crystallin association. We used the electron paramagnetic resonance approach to investigate the association of α-crystallin with phosphatidylcholine (PC) membranes of different acyl chain lengths and degrees of unsaturation and with and without cholesterol (Chol). The association constant (Ka) of α-crystallin follows the trends, i.e., Ka (14:0–14:0 PC) > Ka (18:0–18:1 PC) > Ka (18:1–18:1 PC) ≈ Ka (16:0–20:4 PC) where the presence of Chol decreases Ka for all membranes. With an increase in α-crystallin concentration, the saturated and monounsaturated membranes rapidly become more immobilized near the headgroup regions than the polyunsaturated membranes. Our results directly correlate the mobility and order near the headgroup regions of the membrane with the Ka, with the less mobile and more ordered membrane having substantially higher Ka. Furthermore, our results show that the hydrophobicity near the headgroup regions of the membrane increases with the α-crystallin association, indicating that the α-crystallin-membrane association forms the hydrophobic barrier to the transport of polar and ionic molecules, supporting the barrier hypothesis in cataract development. Full article
(This article belongs to the Special Issue Artificial Models of Biological Membranes)
Show Figures

Figure 1

11 pages, 1097 KB  
Communication
Bioactive Metabolites of Marine Origin Have Unusual Effects on Model Membrane Systems
by Martin Jakubec, Christian Totland, Frode Rise, Elahe Jafari Chamgordani, Britt Paulsen, Louis Maes, An Matheeussen, Lise-Lotte Gundersen and Øyvind Halskau
Mar. Drugs 2020, 18(2), 125; https://doi.org/10.3390/md18020125 - 19 Feb 2020
Cited by 1 | Viewed by 3601
Abstract
Marine sponges and soft corals have yielded novel compounds with antineoplastic and antimicrobial activities. Their mechanisms of action are poorly understood, and in most cases, little relevant experimental evidence is available on this topic. In the present study, we investigated whether agelasine D [...] Read more.
Marine sponges and soft corals have yielded novel compounds with antineoplastic and antimicrobial activities. Their mechanisms of action are poorly understood, and in most cases, little relevant experimental evidence is available on this topic. In the present study, we investigated whether agelasine D (compound 1) and three agelasine analogs (compound 24) as well as malonganenone J (compound 5), affect the physical properties of a simple lipid model system, consisting of dioleoylphospahtidylcholine and dioleoylphosphatidylethanolamine. The data indicated that all the tested compounds increased stored curvature elastic stress, and therefore, tend to deform the bilayer which occurs without a reduction in the packing stress of the hexagonal phase. Furthermore, lower concentrations (1%) appear to have a more pronounced effect than higher ones (5–10%). For compounds 4 and 5, this effect is also reflected in phospholipid headgroup mobility assessed using 31P chemical shift anisotropy (CSA) values of the lamellar phases. Among the compounds tested, compound 4 stands out with respect to its effects on the membrane model systems, which matches its efficacy against a broad spectrum of pathogens. Future work that aims to increase the pharmacological usefulness of these compounds could benefit from taking into account the compound effects on the fluid lamellar phase at low concentrations. Full article
Show Figures

Graphical abstract

12 pages, 6558 KB  
Article
Computer Simulations of Lipid Nanoparticles
by Xavier F. Fernandez-Luengo, Juan Camacho and Jordi Faraudo
Nanomaterials 2017, 7(12), 461; https://doi.org/10.3390/nano7120461 - 20 Dec 2017
Cited by 8 | Viewed by 9353
Abstract
Lipid nanoparticles (LNP) are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain [...] Read more.
Lipid nanoparticles (LNP) are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain forcefield, of self-assembled LNPs made by tripalmitin lipid in water. We also study the adsorption of Tween 20 surfactant as a protective layer on top of the LNP. We show that, at 310 K (the temperature of interest in biological applications), the structure of the lipid nanoparticles is similar to that of a liquid droplet, in which the lipids show no nanostructuration and have high mobility. We show that, for large enough nanoparticles, the hydrophilic headgroups develop an interior surface in the NP core that stores liquid water. The surfactant is shown to organize in an inhomogeneous way at the LNP surface, with patches with high surfactant concentrations and surface patches not covered by surfactant. Full article
(This article belongs to the Special Issue Experimental Nanosciences, Computational Chemistry, and Data Analysis)
Show Figures

Figure 1

Back to TopTop