Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = harziane diterpenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2588 KiB  
Article
Structure and Fungicidal Activity of Secondary Metabolites Isolated from Trichoderma hamatum b-3
by Li Huang, Qiang Bian, Mengdan Liu, Yiwen Hu, Lijuan Chen, Yucheng Gu, Qiwei Zu, Guangzhi Wang and Dale Guo
J. Fungi 2024, 10(11), 755; https://doi.org/10.3390/jof10110755 - 31 Oct 2024
Cited by 1 | Viewed by 1143
Abstract
Two new harziane diterpenes (12), five undescribed cyclonerane sesquiterpenes (37), and three known compounds, 11-cycloneren-3, 7, 10-triol (8), harziandione (9), and dehydroacetic acid (10), were isolated from Trichoderma hamatum [...] Read more.
Two new harziane diterpenes (12), five undescribed cyclonerane sesquiterpenes (37), and three known compounds, 11-cycloneren-3, 7, 10-triol (8), harziandione (9), and dehydroacetic acid (10), were isolated from Trichoderma hamatum b-3. Their structures were elucidated via comprehensive inspection of spectral evidence in HRESIMS and 1D and 2D NMR, and the absolute configuration of 18 was confirmed by NMR, ECD calculation, as well as Mosher’s method. In vitro fungicidal activity showed that some compounds showed great inhibitory activity against pathogenic fungi, including Fusarium graminearum, Sclerotinia sclerotiorum, Botrytis cinerea, and Rhizoctonia solani, among which compound 10 showed 100% inhibition of S. sclerotiorum and B. cinerea. The in vivo activity test showed that compound 10 was 65.8% effective against B. cinerea and compound 10 can be used as a lead compound for the development of biopesticides that inhibit B. cinerea. This study elucidated the bioactivity of secondary metabolites of T. hamatum and indicated the direction for the subsequent development of the biological control activity of T. hamatum. Full article
(This article belongs to the Special Issue Trichoderma in Action)
Show Figures

Figure 1

11 pages, 2582 KiB  
Article
Novel Harziane Diterpenes from Deep-Sea Sediment Fungus Trichoderma sp. SCSIOW21 and Their Potential Anti-Inflammatory Effects
by Hongxu Li, Xinyi Liu, Xiaofan Li, Zhangli Hu and Liyan Wang
Mar. Drugs 2021, 19(12), 689; https://doi.org/10.3390/md19120689 - 1 Dec 2021
Cited by 19 | Viewed by 3594
Abstract
Five undescribed harziane-type diterpene derivatives, namely harzianol K (1), harzianol L (4), harzianol M (5), harzianol N (6), harzianol O (7), along with two known compounds, hazianol J (2) and harzianol [...] Read more.
Five undescribed harziane-type diterpene derivatives, namely harzianol K (1), harzianol L (4), harzianol M (5), harzianol N (6), harzianol O (7), along with two known compounds, hazianol J (2) and harzianol A (3) were isolated from the deep-sea sediment-derived fungus Trichoderma sp. SCSIOW21. The relative configurations were determined by meticulous spectroscopic methods including 1D, 2D NMR spectroscopy, and HR-ESI-MS. The absolute configurations were established by the ECD curve calculations and the X-ray crystallographic analysis. These compounds (1, and 47) contributed to increasing the diversity of the caged harziane type diterpenes with highly congested skeleton characteristics. Harzianol J (2) exhibited a weak anti-inflammatory effect with 81.8% NO inhibition at 100 µM. Full article
(This article belongs to the Special Issue Natural Product from the Deep Sea)
Show Figures

Graphical abstract

Back to TopTop