Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = hair coloring shampoo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1464 KiB  
Article
GC-MS Analysis with In Situ Derivatization for Managing Toxic Oxidative Hair Dye Ingredients in Hair Products
by Geon Park, Won-Young Cho, Jisu Park, Yujin Jeong, Jihwan Kim, Hyo Joon Park, Kyung Hyun Min and Wonwoong Lee
Chemosensors 2025, 13(3), 94; https://doi.org/10.3390/chemosensors13030094 - 6 Mar 2025
Cited by 1 | Viewed by 1289
Abstract
Hair care products that have oxidative hair dye ingredients have been widely used to permanently change hair color for the characteristic and younger appearance of people and/or their companion animals. In the European Union and the Republic of Korea, these ingredients have been [...] Read more.
Hair care products that have oxidative hair dye ingredients have been widely used to permanently change hair color for the characteristic and younger appearance of people and/or their companion animals. In the European Union and the Republic of Korea, these ingredients have been carefully used or prohibited for cosmetic products according to their genotoxic potential. There is a growing demand for reliable quantification methods to monitor oxidative hair dye ingredients in hair care products. However, accurately quantifying oxidative dyes in cosmetic samples is challenging due to their high reactivity and chemical instability under both basic and ambient conditions. For this reason, for the quantification methods, elaborate sample preparation procedures should be accompanied by chemical derivatization to avoid chemical reactions between hair dye ingredients, before instrumental analysis. Therefore, this study utilized a gas chromatography–mass spectrometry (GC-MS) method combined with in situ chemical derivatization to quantify 26 oxidative hair dye ingredients in hair care products. In situ derivatization using acetic anhydride provided the characteristic [M-CH2CO]+ ions at m/z (M-42), produced by the loss of a ketene from the hair dye ingredient derivatives. These characteristic ions can be used to establish a selective ion monitoring (SIM) mode of GC-MS. The established method was successfully applied to hair dye products (n = 13) and hair coloring shampoos (n = 12). Most products contained unintended hair dye ingredients including catechol without labeling. It was cautiously speculated that these unintended hair dye ingredients might be caused by biodegradation due to various enzymes in natural product extracts. This study presents a reliable GC-MS method with in situ derivatization to quantify 26 oxidative hair dye ingredients in hair care products, addressing challenges related to their chemical instability. This method is crucial for public health and regulatory compliance. Full article
Show Figures

Figure 1

13 pages, 5314 KiB  
Article
Multicolor Hair Dyeing with Biocompatible Dark Polyphenol Complex-Integrated Shampoo with Reactive Oxygen Species Scavenging Activity
by Tae Min Kim, Hyun Jeong Won, Jun-Ho Yang, Hayeon Jo, A Hyeon Kim, Dohyun Nam, Seul Gi Kim, Eun-Jung Jin, Heung Jin Bae and Sung Young Park
Biomimetics 2023, 8(6), 469; https://doi.org/10.3390/biomimetics8060469 - 1 Oct 2023
Cited by 2 | Viewed by 3350
Abstract
Hair dyeing has become a prevalent lifestyle trend, especially within the fashion industry. However, it possesses disadvantages, such as containing carcinogenic and toxic materials. In this study, we developed a biocompatible hair-dyeing technology using a shampoo with a dark polyphenol complex (DPC), referred [...] Read more.
Hair dyeing has become a prevalent lifestyle trend, especially within the fashion industry. However, it possesses disadvantages, such as containing carcinogenic and toxic materials. In this study, we developed a biocompatible hair-dyeing technology using a shampoo with a dark polyphenol complex (DPC), referred to as S-DPC. The DPC was formed from a mixture of gallic acid and [1,1′-biphenyl]-2,2′,4,4′,5,5′-hexol and used to enhance both the stability of the hair coating and its ability to scavenge reactive oxygen species (ROS). Colloidal DPC particles play a pivotal role in the coating process of various hair dyes, ensuring the uniform coloring of human hair through intermolecular interactions such as hydrogen bonding. Owing to the effect of a polyphenol complex on hair coating, we observed improved antistatic performance and enhanced mechanical strength, resulting in a substantial increase in elongation at the breaking point from 33.74% to 48.85%. The multicolor S-DPC exhibited antioxidant properties, as indicated by its ROS-scavenging ability, including 2,2-diphenyl-1-picrylhydrazyl inhibition (87–89%), superoxide radical scavenging (84–87%), and hydroxyl radical scavenging (95–98%). Moreover, the in vitro analysis of the DPC revealed nearly 100% cell viability in live and dead assays, highlighting the remarkable biocompatibility of the DPC. Therefore, considering its effectiveness and safety, this biomaterial has considerable potential for applications in hair dyeing. Full article
Show Figures

Graphical abstract

13 pages, 5949 KiB  
Article
Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations
by Ana Cláudia Santos, Abhishek Panchal, Naureen Rahman, Miguel Pereira-Silva, Irina Pereira, Francisco Veiga and Yuri Lvov
Nanomaterials 2019, 9(6), 903; https://doi.org/10.3390/nano9060903 - 21 Jun 2019
Cited by 51 | Viewed by 8051
Abstract
A new approach for hair treatment through coating with nanotubes loaded with drugs or dyes for coloring is suggested. This coating is produced by nanotube self-assembly, resulting in stable 2–3 µm thick layers. For medical treatment such formulations allow for sustained long-lasting drug [...] Read more.
A new approach for hair treatment through coating with nanotubes loaded with drugs or dyes for coloring is suggested. This coating is produced by nanotube self-assembly, resulting in stable 2–3 µm thick layers. For medical treatment such formulations allow for sustained long-lasting drug delivery directly on the hair surface, also enhanced in the cuticle openings. For coloring, this process allows avoiding a direct hair contact with dye encased inside the clay nanotubes and provides a possibility to load water insoluble dyes from an organic solvent, store the formulation for a long time in dried form, and then apply to hair as an aqueous nanotube suspension. The described technique works with human and other mammal hairs and halloysite nanoclay coating is resilient against multiple shampoo washing. The most promising, halloysite tubule clay, is a biocompatible natural material which may be loaded with basic red, blue, and yellow dyes for optimized hair color, and also with drugs (e.g., antilice care-permethrin) to enhance the treatment efficiency with sustained release. This functionalized nanotube coating may have applications in human medical and beauty formulations, as well as veterinary applications. Full article
(This article belongs to the Special Issue Nanotubes for Health, Environment and Cultural Heritages)
Show Figures

Graphical abstract

6 pages, 760 KiB  
Article
Iron Gall Ink Revisited: Natural Formulation for Black Hair-Dyeing
by Sang Yeong Han, Seok-Pyo Hong, Eunhye K. Kang, Beom Jin Kim, Hojae Lee, Won Il Kim and Insung S. Choi
Cosmetics 2019, 6(2), 23; https://doi.org/10.3390/cosmetics6020023 - 1 Apr 2019
Cited by 20 | Viewed by 15036
Abstract
Inspired by the iron gall ink that has been used since the Middle Ages, we formulated a hair-dyeing solution for blackening hair. The ingredients in the formulation have been approved as cosmetic ingredients, including tannic acid, gallic acid, and Fe(d-gluconate)2 [...] Read more.
Inspired by the iron gall ink that has been used since the Middle Ages, we formulated a hair-dyeing solution for blackening hair. The ingredients in the formulation have been approved as cosmetic ingredients, including tannic acid, gallic acid, and Fe(d-gluconate)2. The formulation does not require any harmful oxidizing agents, such as hydrogen peroxide—the Fe(II) cations bound to tannins are oxidized spontaneously upon exposure to air and form the blackish Fe(III)-tannin nanocomplex that coats hair firmly. In our study, we show that the dyed color did not fade under sunlight exposure for at least three months and after shampooing. This natural formulation for black hair-dyeing can have great impact in the hair cosmetic industry. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Graphical abstract

10 pages, 203 KiB  
Review
In Vitro Methodologies to Evaluate the Effects of Hair Care Products on Hair Fiber
by Robson Miranda Da Gama, André Rolim Baby and Maria Valéria Robles Velasco
Cosmetics 2017, 4(1), 2; https://doi.org/10.3390/cosmetics4010002 - 3 Jan 2017
Cited by 13 | Viewed by 15953
Abstract
Consumers use different hair care products to change the physical appearance of their hair, such as shampoos, conditioners, hair dye and hair straighteners. They expect cosmetics products to be available in the market to meet their needs in a broad and effective manner. [...] Read more.
Consumers use different hair care products to change the physical appearance of their hair, such as shampoos, conditioners, hair dye and hair straighteners. They expect cosmetics products to be available in the market to meet their needs in a broad and effective manner. Evaluating efficacy of hair care products in vitro involves the use of highly accurate equipment. This review aims to discuss in vitro methodologies used to evaluate the effects of hair care products on hair fiber, which can be assessed by various methods, such as Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, Optical Coherence Tomography, Infrared Spectroscopy, Raman Spectroscopy, Protein Loss, Electrophoresis, color and brightness, thermal analysis and measuring mechanical resistance to combing and elasticity. The methodology used to test hair fibers must be selected according to the property being evaluated, such as sensory characteristics, determination of brightness, resistance to rupture, elasticity and integrity of hair strain and cortex, among others. If equipment is appropriate and accurate, reproducibility and ease of employment of the analytical methodology will be possible. Normally, the data set must be discussed in order to obtain conclusive answers to the test. Full article
(This article belongs to the Special Issue Hair Care Cosmetics)
10 pages, 3375 KiB  
Review
Essential of Hair Care Cosmetics
by Aurora Alessandrini and Bianca Maria Piraccini
Cosmetics 2016, 3(4), 34; https://doi.org/10.3390/cosmetics3040034 - 27 Sep 2016
Cited by 24 | Viewed by 53224
Abstract
Nowadays, hair care and style play a very important role in people’s physical aspect and self-perception. Hair cosmetics can be distinguished into two main categories: cosmetics with temporary effect on the hair, for example shampoos, conditioners, sprays, and temporary colors; and cosmetics with [...] Read more.
Nowadays, hair care and style play a very important role in people’s physical aspect and self-perception. Hair cosmetics can be distinguished into two main categories: cosmetics with temporary effect on the hair, for example shampoos, conditioners, sprays, and temporary colors; and cosmetics with permanent effect on the hair, such as permanent waves, relaxers, bleaches and permanent colors. These cosmetic procedures may induce hair abnormalities. We provide an overview on the most important characteristics of these procedures, analyzing components and effects on the hair. Finally, we evaluated new camouflage techniques and tattoo scalp. Full article
(This article belongs to the Special Issue Hair Care Cosmetics)
Show Figures

Figure 1

Back to TopTop