Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hPCy-MSCs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1232 KiB  
Review
Mesenchymal Stem Cells Derived from Human Periapical Cysts and Their Implications in Regenerative Medicine
by Alexandra Roi, Ciprian Roi, Meda Lavinia Negruțiu, Laura Cristina Rusu and Mircea Riviș
Biomedicines 2023, 11(9), 2436; https://doi.org/10.3390/biomedicines11092436 - 31 Aug 2023
Cited by 10 | Viewed by 2190
Abstract
Mesenchymal stem cells currently play an important role in the tissue engineering field in developing new regenerative approaches. The oral cavity is a rich source of mesenchymal stem cells, and introducing the use of dental stem cells, characterized by a multilineage differentiation potential, [...] Read more.
Mesenchymal stem cells currently play an important role in the tissue engineering field in developing new regenerative approaches. The oral cavity is a rich source of mesenchymal stem cells, and introducing the use of dental stem cells, characterized by a multilineage differentiation potential, immunomodulatory activity and repair capacity, offers a good perspective for clinical dentistry. Human periapical cyst mesenchymal stem cells (hPCy-MSCs) represent a new category of dental stem cells, being collected from pathological tissue and exhibiting MSCs-like properties. As studies have described, these new identified cells possess the same characteristics as those described in MSCs, exhibiting plasticity, a high proliferation rate and the potential to differentiate into osteogenic, adipogenic and neural lineages. Reusing the biological tissue that is considered pathologic offers a new perspective for the development of further clinical applications. The identification and characterization of MSCs in the human periapical cysts allows for a better understanding of the molecular interactions, the potential healing capacity and the mechanisms of inducing the local osteogenic process, integrated in the microenvironment. Although their involvement in regenerative medicine research is recent, they exhibit important properties that refer them for the development of clinical applications in dentistry. Full article
(This article belongs to the Special Issue Cell Biology in Dentistry)
Show Figures

Graphical abstract

11 pages, 293 KiB  
Perspective
Human Periapical Cyst-Derived Stem Cells Can Be A Smart “Lab-on-A-Cell” to Investigate Neurodegenerative Diseases and the Related Alteration of the Exosomes’ Content
by Marco Tatullo, Bruna Codispoti, Gianrico Spagnuolo and Barbara Zavan
Brain Sci. 2019, 9(12), 358; https://doi.org/10.3390/brainsci9120358 - 5 Dec 2019
Cited by 13 | Viewed by 5137
Abstract
Promising researches have demonstrated that the alteration of biological rhythms may be consistently linked to neurodegenerative pathologies. Parkinson’s disease (PD) has a multifactorial pathogenesis, involving both genetic and environmental and/or molecular co-factors. Generally, heterogeneous alterations in circadian rhythm (CR) are a typical finding [...] Read more.
Promising researches have demonstrated that the alteration of biological rhythms may be consistently linked to neurodegenerative pathologies. Parkinson’s disease (PD) has a multifactorial pathogenesis, involving both genetic and environmental and/or molecular co-factors. Generally, heterogeneous alterations in circadian rhythm (CR) are a typical finding in degenerative processes, such as cell aging and death. Although numerous genetic phenotypes have been discovered in the most common forms of PD, it seems that severe deficiencies in synaptic transmission and high vesicular recycling are frequently found in PD patients. Neuron-to-neuron interactions are often ensured by exosomes, a specific type of extracellular vesicle (EV). Neuron-derived exosomes may carry several active compounds, including miRNAs: Several studies have found that circulating miRNAs are closely associated with an atypical oscillation of circadian rhythm genes, and they are also involved in the regulation of clock genes, in animal models. In this context, a careful analysis of neural-differentiated Mesenchymal Stem Cells (MSCs) and the molecular and genetic characterization of their exosome content, both in healthy cells and in PD-induced cells, could be a strategic field of investigation for early diagnosis and better treatment of PD and similar neurodegenerative pathologies. A novel MSC population, called human periapical cyst–mesenchymal stem cells (hPCy–MSCs), has demonstrated that it naively expresswa the main neuronal markers, and may differentiate towards functional neurons. Therefore, hPCy–MSCs can be considered of particular interest for testing of in vitro strategies to treat neurological diseases. On the other hand, the limitations of using stem cells is an issue that leads researchers to perform experimental studies on the exosomes released by MCSs. Human periapical cyst-derived mesenkymal stem cells can be a smart “lab-on-a-cell” to investigate neurodegenerative diseases and the related exosomes’ content alteration. Full article
(This article belongs to the Collection Collection on Molecular and Cellular Neuroscience)
17 pages, 13388 KiB  
Article
PLA-Based Mineral-Doped Scaffolds Seeded with Human Periapical Cyst-Derived MSCs: A Promising Tool for Regenerative Healing in Dentistry
by Marco Tatullo, Gianrico Spagnuolo, Bruna Codispoti, Fausto Zamparini, Anqi Zhang, Micaela Degli Esposti, Conrado Aparicio, Carlo Rengo, Manuel Nuzzolese, Lucia Manzoli, Fabio Fava, Carlo Prati, Paola Fabbri and Maria Giovanna Gandolfi
Materials 2019, 12(4), 597; https://doi.org/10.3390/ma12040597 - 16 Feb 2019
Cited by 75 | Viewed by 6587
Abstract
Human periapical cyst mesenchymal stem cells (hPCy-MSCs) are a newly discovered cell population innovatively collected from inflammatory periapical cysts. The use of this biological waste guarantees a source of stem cells without any impact on the surrounding healthy tissues, presenting a valuable potential [...] Read more.
Human periapical cyst mesenchymal stem cells (hPCy-MSCs) are a newly discovered cell population innovatively collected from inflammatory periapical cysts. The use of this biological waste guarantees a source of stem cells without any impact on the surrounding healthy tissues, presenting a valuable potential in tissue engineering and regenerative medicine applications. In the present study, hPCy-MSCs were collected, isolated, and seeded on three experimental mineral-doped porous scaffolds produced by the thermally-induced phase-separation (TIPS) technique. Mineral-doped scaffolds, composed of polylactic acid (PLA), dicalcium phosphate dihydrate (DCPD), and/or hydraulic calcium silicate (CaSi), were produced by TIPS (PLA-10CaSi, PLA-5CaSi-5DCPD, PLA-10CaSi-10DCPD). Micro-CT analysis evaluated scaffolds micromorphology. Collected hPCy-MSCs, characterized by cytofluorimetry, were seeded on the scaffolds and tested for cell proliferation, cells viability, and gene expression for osteogenic and odontogenic differentiation (DMP-1, OSC, RUNX-2, HPRT). Micro-CT revealed an interconnected highly porous structure for all the scaffolds, similar total porosity with 99% open pores. Pore wall thickness increased with the percentage of CaSi and DCPD. Cells seeded on mineral-doped scaffolds showed a superior proliferation compared to pure PLA scaffolds (control), particularly on PLA-10CaSi-10DCPD at day 12. A higher number of non-viable (red stained) cells was observable on PLA scaffolds at days 14 and 21. DMP-1 expression increased in hPCy-MSCs cultured on all mineral-doped scaffolds, in particular on PLA-5CaSi-5DCPD and PLA-10CaSi-10DCPD. In conclusion, the innovative combination of experimental scaffolds colonized with autologous stem cells from periapical cyst represent a promising strategy for regenerative healing of periapical and alveolar bone. Full article
(This article belongs to the Special Issue Current and Future Trends in Dental Materials)
Show Figures

Figure 1

8 pages, 196 KiB  
Review
Commitment of Oral-Derived Stem Cells in Dental and Maxillofacial Applications
by Gianrico Spagnuolo, Bruna Codispoti, Massimo Marrelli, Carlo Rengo, Sandro Rengo and Marco Tatullo
Dent. J. 2018, 6(4), 72; https://doi.org/10.3390/dj6040072 - 13 Dec 2018
Cited by 88 | Viewed by 5975
Abstract
Tissue engineering is based on the interaction between stem cells, biomaterials and factors delivered in biological niches. Oral tissues have been found to be rich in stem cells from different sources: Stem cells from oral cavity are easily harvestable and have shown a [...] Read more.
Tissue engineering is based on the interaction between stem cells, biomaterials and factors delivered in biological niches. Oral tissues have been found to be rich in stem cells from different sources: Stem cells from oral cavity are easily harvestable and have shown a great plasticity towards the main lineages, specifically towards bone tissues. Dental pulp stem cells (DPSCs) are the most investigated mesenchymal stem cells (MSCs) from dental tissues, however, the oral cavity hosts several other stem cell lineages that have also been reported to be a good alternative in bone tissue engineering. In particular, the newly discovered population of mesenchymal stem cells derived from human periapical inflamed cysts (hPCy-MSCs) have showed very promising properties, including high plasticity toward bone, vascular and neural phenotypes. In this topical review, the authors described the main oral-derived stem cell populations, their most interesting characteristics and their ability towards osteogenic lineage. This review has also investigated the main clinical procedures, reported in the recent literature, involving oral derived-MSCs and biomaterials to get better bone regeneration in dental procedures. The numerous populations of mesenchymal stem cells isolated from oral tissues (DPSCs, SHEDs, PDLSCs, DFSCs, SCAPs, hPCy-MSCs) retain proliferation ability and multipotency; these features are exploited for clinical purposes, including regeneration of injured tissues and local immunomodulation; we reported on the last studies on the proper use of such MSCs within a biological niche and the proper way to storage them for future clinical use. Full article
Show Figures

Graphical abstract

Back to TopTop