Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = ground granulated blast furnace slag (GGBS)–magnesia (MgO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9539 KiB  
Article
Dynamic Mechanical Performance of Sulfate-Bearing Soils Stabilized by Magnesia-Ground Granulated Blast Furnace Slag
by Wentao Li, Kang Yang, Yang Cheng, Ke Huang, Yan Hu, Le Liu and Xing Li
Sustainability 2024, 16(10), 4313; https://doi.org/10.3390/su16104313 - 20 May 2024
Cited by 3 | Viewed by 1579
Abstract
Sulfate soils often caused foundation settlement, uneven deformation, and ground cracking. The distribution of sulfate-bearing soil is extensive, and effective stabilization of sulfate-bearing soil could potentially exert a profound influence on environmental protection. Ground granulated blast furnace slag (GGBS)–magnesia (MgO) can be an [...] Read more.
Sulfate soils often caused foundation settlement, uneven deformation, and ground cracking. The distribution of sulfate-bearing soil is extensive, and effective stabilization of sulfate-bearing soil could potentially exert a profound influence on environmental protection. Ground granulated blast furnace slag (GGBS)–magnesia (MgO) can be an effective solution to stabilize sulfate soils. Dynamic cyclic loading can be used to simulate moving vehicles applied on subgrade soils, but studies on the dynamic mechanical properties of sulfate-bearing soil under cyclic loading are limited. In this study, GGBS-MgO was used to treat Ca-sulfate soil and Mg-sulfate soil. The swelling of the specimens was analyzed by a three-dimensional swelling test, and the change in compressive strength of the specimens after immersion was analyzed by an unconfined test. The dynamic elastic properties and energy dissipation of GGBS-MgO-stabilized sulfate soils were evaluated using a fatigue test, and the mineralogy and microstructure of the stabilized soils were investigated by X-ray diffraction and scanning electron microscopy. The results showed that the maximum swelling percentage of stabilized Ca-sulfate soil was achieved when the GGBS:MgO ratio was 6:4, resulting in an expansion rate of 14.211%. In contrast, stabilized Mg-sulfate soil exhibited maximum swelling at GGBS:MgO = 9:1, with a swelling percentage of 5.127%. As the GGBS:MgO ratio decreased, the dynamic elastic modulus of stabilized Ca-sulfate soil diminished from 2.8 MPa to 2.69 MPa, and energy dissipation reduced from 0.02 MJ/m3 to 0.019 MJ/m3. Conversely, the dynamic elastic modulus of stabilized Mg-sulfate soil escalated from 2.16 MPa to 6.12 MPa, while energy dissipation decreased from 0.023 MJ/m3 to 0.004 MJ/m3. After soaking, the dynamic elastic modulus of Ca-sulfate soil peaked (4.01 MPa) and energy dissipation was at its lowest (0.012 MJ/m3) at GGBS:MgO = 9:1. However, stabilized Mg-sulfate soil exhibited superior performance at GGBS:MgO = 6:4, with a dynamic elastic modulus of 0.74 MPa and energy dissipation of 0.05 MJ/m3. CSH increased significantly in the Ca-sulfate soil treated with GGBS-MgO. The generation of ettringite increased with the decrease in the GGBS-MgO ratio after immersion. MSH and less CSH were formed in GGBS-MgO-stabilized Mg-sulfate soil compared to Ca-sulfate soils. In summary, the results of this study provide some references for the improvement and application of sulfate soil in the field of road subgrade. Full article
Show Figures

Figure 1

13 pages, 1824 KiB  
Article
Engineering Properties of Novel Vertical Cutoff Wall Backfills Composed of Alkali-Activated Slag, Polymer-Amended Bentonite and Sand
by Zheyuan Jiang, Xianlei Fu, Jianyong Shi, Chi Che and Yanjun Du
Polymers 2023, 15(14), 3059; https://doi.org/10.3390/polym15143059 - 16 Jul 2023
Cited by 6 | Viewed by 1719
Abstract
The workability, hydraulic conductivity, and mechanical properties are essential to contaminant containment performance of cementitious backfills in vertical cutoff walls at contaminated sites. This study aims to investigate the engineering properties of a novel vertical cutoff wall backfill composed of reactive magnesia (MgO)-activated [...] Read more.
The workability, hydraulic conductivity, and mechanical properties are essential to contaminant containment performance of cementitious backfills in vertical cutoff walls at contaminated sites. This study aims to investigate the engineering properties of a novel vertical cutoff wall backfill composed of reactive magnesia (MgO)-activated ground granulated blast furnace slag (GGBS), sodium-activated calcium bentonite amended with polyacrylamide cellulose (PAC), and clean sand (referred to as MSBS-PAC). Backfills composed of MgO-activated GGBS, sodium-activated calcium bentonite, and clean sand (referred to as MSBS) were also tested for comparison purposes. A series of tests were conducted which included slump test, flexible-wall hydraulic conductivity test, and unconfined compression test. The pore size distributions of two types of backfills were investigated via the nuclear magnetic resonance (NMR) technique. The results showed the moisture content corresponding to the target slump height was higher for MSBS-PAC backfill than that for MSBS backfill. The MSBS-PAC backfill possessed lower pH, dry density, and higher void ratio at different standard curing times as compared to MSBS backfill. The unconfined compressive strength and strain at failure of the MSBS-PAC backfill were noticeable lower than those of the MSBS backfill. In contrast, the hydraulic conductivity of MSBS-PAC backfill was approximately one order of magnitude lower than that of the MSBS backfill, which was less than 10−9 m/s after 28-day and 90-day curing. Lower hydraulic conductivity of MSBS-PAC backfill was attributed to the improvement of pore structure and pore fluid environment by PAC amendment. Full article
(This article belongs to the Special Issue Polymer Composites in Municipal Solid Waste Landfills)
Show Figures

Figure 1

15 pages, 5394 KiB  
Article
Comparison of Two Sulfate-Bearing Soils Stabilized with Reactive Magnesia-Activated Ground Granulated Blast Furnace Slag: Swelling, Strength, and Mechanism
by Wentao Li, Runxiang Li, Yin Chen and Henglin Xiao
Buildings 2023, 13(1), 230; https://doi.org/10.3390/buildings13010230 - 13 Jan 2023
Cited by 8 | Viewed by 2143
Abstract
Sulfate-bearing soils, which causes many engineering problems, e.g., cracking, collapse, and pavement layer settlement, are often encountered in the construction of pavements. Ground granulated blast furnace slag (GGBS)-magnesia (MgO) has been regarded as an effective curing agent in the treatment of sulfate-bearing soil [...] Read more.
Sulfate-bearing soils, which causes many engineering problems, e.g., cracking, collapse, and pavement layer settlement, are often encountered in the construction of pavements. Ground granulated blast furnace slag (GGBS)-magnesia (MgO) has been regarded as an effective curing agent in the treatment of sulfate-bearing soil containing gypsum. However, field sulfate-bearing soils usually include other forms of sulfates, such as sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4). Currently, few studies have investigated the effect of the type of sulfate on the properties of sulfate-bearing soil stabilized with GGBS-MgO. In this study, GGBS-MgO was used to treat Ca-sulfate-soil and Mg-sulfate-soil. Swelling, unconfined compressive strength (UCS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) tests were employed to investigate the properties of the stabilized soils. The results showed that when suitable GGBS:MgO ratios were achieved, the swelling of the two types of sulfate-bearing soils could be well suppressed. However, the trend that the swelling varied with the decrease in the GGBS:MgO ratios was opposite between the two soils. The UCS of Mg-sulfate-soils was much lower than that of the Ca-sulfate-soils after the stabilization of GGBS-MgO irrespective of the curing or soaking stage. CSH significantly occurred in Ca-sulfated soils treated by GGBS-MgO. Ettringite was not observed in the soil with GGBS-MgO = 9:1 but was observed in 6:4. Compared to Ca-sulfate-soils, MSH and less CSH were formed in Mg-sulfate-soils stabilized with GGBS-MgO, which caused the lower strength of the stabilized Mg-sulfate-soils. No ettringite was formed in such soils. Hence, the sulfate type contained in the soils had a significant effect on the swelling and strength properties of sulfate-bearing soils with GGBS-MgO, and so the sulfate needs to be identified before the soil’s stabilization. Full article
Show Figures

Figure 1

16 pages, 7448 KiB  
Article
Stabilization of a Clay Soil Using Cementing Material from Spent Refractories and Ground-Granulated Blast Furnace Slag
by Andres Seco, Jesus María del Castillo, Sandra Espuelas, Sara Marcelino-Sadaba and Benat Garcia
Sustainability 2021, 13(6), 3015; https://doi.org/10.3390/su13063015 - 10 Mar 2021
Cited by 16 | Viewed by 2867
Abstract
Nowadays, huge amounts of refractory materials are generated around the world. The majority of them lack valorization methods. This study analyzes the ability of a doloma and two magnesia spent refractory wastes as soil stabilizers on their own, as well as when combined [...] Read more.
Nowadays, huge amounts of refractory materials are generated around the world. The majority of them lack valorization methods. This study analyzes the ability of a doloma and two magnesia spent refractory wastes as soil stabilizers on their own, as well as when combined with Ground-Granulated Blast Furnace Slags (GGBS). These materials showed a limited ability for the soil’s plasticity modification from a plasticity index of 15.6 to a minimum of 12.7. The high pH of the additives increased the soil’s pH from 7.88 to values in the range of 10.94–11.25 before the 28 days, allowing the development of the pozzolanic reactions. Unconfined compressive strength (UCS) increased along the curing time, reaching a maximum value of 5.68 MPa after 90 days. Based on the UCS, the optimum refractory GGBS ratios oscillate between 30:70 and 50:50. The UCS values after soaking samples reduced the unsoaked results between 68.70% to 94.41%. The binders considered showed a low effect against the soil swelling and the lack of delayed expansive effects because of the MgO hydration. Finally, X Ray Diffraction (XRD) tests showed that the stabilization only slightly modified the combinations of mineralogy and the formation of Magnesium Silicate Hydrate (MSH) gels. Full article
(This article belongs to the Special Issue Soil Stabilization in Sustainability)
Show Figures

Figure 1

Back to TopTop