Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = green process engineering (GPE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
813 KiB  
Proceeding Paper
Unlocking the Potential of Fishery Waste: Acid-Soluble Ultrasound Extraction of Marine Collagen from Sardine Fish Scales
by Afaf Moufaddel, Khalid Bougrin, Hanae El Monfalouti and Badr Eddine Kartah
Chem. Proc. 2024, 16(1), 115; https://doi.org/10.3390/ecsoc-28-20194 - 14 Nov 2024
Viewed by 324
Abstract
Globally, fish consumption generates significant waste from fish markets and processing industries, including fish skin, scales, and bones. If not appropriately managed, this fishery waste can lead to environmental pollution. Collagen, the most abundant protein in animal bodies, has diverse medical, biomedical, and [...] Read more.
Globally, fish consumption generates significant waste from fish markets and processing industries, including fish skin, scales, and bones. If not appropriately managed, this fishery waste can lead to environmental pollution. Collagen, the most abundant protein in animal bodies, has diverse medical, biomedical, and pharmaceutical applications, but its high cost has constrained its usage. Collagen derived from marine sources, particularly from the by-products of fish processing, is seen as an alternative to collagens from land animals. There has been growing interest in utilizing fish scales as a cost-effective source of this valuable collagen-rich protein. Repurposing fish scales could alleviate environmental pressure and create additional commercial value. In a recent study, collagen was isolated from the scales of Moroccan Sardina pilchardus, a fish species renowned for its high collagen content. This marine collagen type I features a triple alpha-helical structure comprising one α2 chain and two α1 chains. The collagen extraction was accomplished using the acid-soluble collagen (ASC) method combined with an ultrasound technique after pretreating the fish scales, involving a demineralization step to remove a high amount of minerals. The ASC extracted from the sardine scales exhibited high solubility in the highly acidic pH range (pH 2). Various physicochemical techniques, such as FTIR, DRX, and SEM, confirmed the isolated protein as collagen. Hence, sardine scales could serve as an alternative source of collagen, and the characteristics of the collagens were minimally affected by the extraction process employed. Full article
Show Figures

Figure 1

19 pages, 5032 KiB  
Article
Adsorption Mechanism of Eco-Friendly Corrosion Inhibitors for Exceptional Corrosion Protection of Carbon Steel: Electrochemical and First-Principles DFT Evaluations
by Abdelkarim Chaouiki, Maryam Chafiq, Young Gun Ko, Aisha H. Al-Moubaraki, Fatima Zahra Thari, Rachid Salghi, Khalid Karrouchi, Khalid Bougrin, Ismat H. Ali and Hassane Lgaz
Metals 2022, 12(10), 1598; https://doi.org/10.3390/met12101598 - 25 Sep 2022
Cited by 26 | Viewed by 4594
Abstract
In the present work, we represent two thiazolidinediones, namely (Z)-5-(4-methoxybenzylidene) thiazolidine-2,4-dione (MeOTZD) and (Z)-5-(4-methylbenzylidene) thiazolidine-2,4-dione (MeTZD), as corrosion inhibitors for carbon steel (CS) in 1.0 M HCl solution. Techniques for gravimetric methods, electrochemical measurements, and morphological characterization were used to conduct experimental evaluations. [...] Read more.
In the present work, we represent two thiazolidinediones, namely (Z)-5-(4-methoxybenzylidene) thiazolidine-2,4-dione (MeOTZD) and (Z)-5-(4-methylbenzylidene) thiazolidine-2,4-dione (MeTZD), as corrosion inhibitors for carbon steel (CS) in 1.0 M HCl solution. Techniques for gravimetric methods, electrochemical measurements, and morphological characterization were used to conduct experimental evaluations. Additionally, calculations based on the fundamental principles of Density Functional Theory (DFT) were employed to simulate inhibitor–iron interactions. Experimental results indicated that investigated inhibitors can significantly enhance the corrosion resistance of CS, reaching a performance of 95% and 87% at 5 × 10−3 mol/L of MeOTZ and MeTZD, respectively. According to gravimetric and electrochemical experiments, inhibitor molecules obstruct corrosion reactions by adhering to the CS surface, which follows the Langmuir isotherm model. On the other hand, the morphological analysis showed a well-distinguished difference between unprotected and protected CS surfaces as a result of the inhibitors’ addition to HCl. Projected density of states and interaction energies obtained from first-principles DFT simulations indicate that the studied molecules form covalent bonds with iron atoms through charge transfer. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Graphical abstract

64 pages, 12106 KiB  
Review
Recent Advances in Age-Related Macular Degeneration Therapies
by Marie Fabre, Lou Mateo, Diana Lamaa, Stéphanie Baillif, Gilles Pagès, Luc Demange, Cyril Ronco and Rachid Benhida
Molecules 2022, 27(16), 5089; https://doi.org/10.3390/molecules27165089 - 10 Aug 2022
Cited by 62 | Viewed by 13435
Abstract
Age-related macular degeneration (AMD) was described for the first time in the 1840s and is currently the leading cause of blindness for patients over 65 years in Western Countries. This disease impacts the eye’s posterior segment and damages the macula, a retina section [...] Read more.
Age-related macular degeneration (AMD) was described for the first time in the 1840s and is currently the leading cause of blindness for patients over 65 years in Western Countries. This disease impacts the eye’s posterior segment and damages the macula, a retina section with high levels of photoreceptor cells and responsible for the central vision. Advanced AMD stages are divided into the atrophic (dry) form and the exudative (wet) form. Atrophic AMD consists in the progressive atrophy of the retinal pigment epithelium (RPE) and the outer retinal layers, while the exudative form results in the anarchic invasion by choroidal neo-vessels of RPE and the retina. This invasion is responsible for fluid accumulation in the intra/sub-retinal spaces and for a progressive dysfunction of the photoreceptor cells. To date, the few existing anti-AMD therapies may only delay or suspend its progression, without providing cure to patients. However, in the last decade, an outstanding number of research programs targeting its different aspects have been initiated by academics and industrials. This review aims to bring together the most recent advances and insights into the mechanisms underlying AMD pathogenicity and disease evolution, and to highlight the current hypotheses towards the development of new treatments, i.e., symptomatic vs. curative. The therapeutic options and drugs proposed to tackle these mechanisms are analyzed and critically compared. A particular emphasis has been given to the therapeutic agents currently tested in clinical trials, whose results have been carefully collected and discussed whenever possible. Full article
Show Figures

Figure 1

13 pages, 29693 KiB  
Article
Corrosion Inhibition Properties of Thiazolidinedione Derivatives for Copper in 3.5 wt.% NaCl Medium
by Hassane Lgaz, Sourav Kr. Saha, Han-seung Lee, Namhyun Kang, Fatima Zahra Thari, Khalid Karrouchi, Rachid Salghi, Khalid Bougrin and Ismat Hassan Ali
Metals 2021, 11(11), 1861; https://doi.org/10.3390/met11111861 - 19 Nov 2021
Cited by 12 | Viewed by 3278
Abstract
Copper is the third-most-produced metal globally due to its exceptional mechanical and thermal properties, among others. However, it suffers serious dissolution issues when exposed to corrosive mediums. Herein, two thiazolidinedione derivatives, namely, (Z)-5-(4-methylbenzylidene)thiazolidine-2,4-dione (MTZD) and (Z)-3-allyl-5-(4-methylbenzylidene)thiazolidine-2,4-dione (ATZD), were synthesized [...] Read more.
Copper is the third-most-produced metal globally due to its exceptional mechanical and thermal properties, among others. However, it suffers serious dissolution issues when exposed to corrosive mediums. Herein, two thiazolidinedione derivatives, namely, (Z)-5-(4-methylbenzylidene)thiazolidine-2,4-dione (MTZD) and (Z)-3-allyl-5-(4-methylbenzylidene)thiazolidine-2,4-dione (ATZD), were synthesized and applied for corrosion protection of copper in 3.5 wt.% NaCl medium. The corrosion inhibition performance of tested compounds was evaluated at different experimental conditions using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curves (PPC) and atomic force microscopy (AFM). EIS results revealed that the addition of studied inhibitors limited the dissolution of copper in NaCl solution, leading to a high polarization resistance compared with the blank solution. In addition, PPC suggested that tested compounds had a mixed-type effect, decreasing anodic and cathodic corrosion reactions. Moreover, surface characterization by AFM indicated a significant decrease in surface roughness of copper after the addition of inhibitors. Outcomes from the present study suggest that ATZD (IE% = 96%) outperforms MTZD (IE% = 90%) slightly, due to the presence of additional –C3H5 unit (–CH2–CH = CH2) in the molecular scaffold of MTZD. Full article
(This article belongs to the Special Issue Surface Coating with Organic-Inorganic Hybrid Materials on Metals)
Show Figures

Figure 1

15 pages, 3885 KiB  
Article
Ulva lactuca Extract and Fractions as Seed Priming Agents Mitigate Salinity Stress in Tomato Seedlings
by Mohammed El Mehdi El Boukhari, Mustapha Barakate, Nadia Choumani, Youness Bouhia and Karim Lyamlouli
Plants 2021, 10(6), 1104; https://doi.org/10.3390/plants10061104 - 30 May 2021
Cited by 21 | Viewed by 5331
Abstract
The present study investigates the effect of Ulva lactuca extract as seed-priming agent for tomato plants under optimal and salinity stress conditions. The aims of this experiment were to assess the effect of seed priming using Ulva lactuca extract in alleviating the salinity [...] Read more.
The present study investigates the effect of Ulva lactuca extract as seed-priming agent for tomato plants under optimal and salinity stress conditions. The aims of this experiment were to assess the effect of seed priming using Ulva lactuca extract in alleviating the salinity stress tomato plants were subjected to, and to find out the possible mechanism of actions behind such a positive effect via means of fractionation of the crude extract and characterization. Salinity application decreased the plant biomass and altered different physiological traits of tomato. However, the application of Ulva lactuca methanol extract (ME) and its fractions (residual fraction (RF), chloroform fraction (CF), butanol fraction (BF), and hexane fraction (HF)) at 1 mg·mL−1 as seed priming substances attenuated the negative effects of salinity on tomato seedlings. Under salinity stress conditions, RF application increased the tomato fresh weight; while ME, RF, and HF treatments significantly decreased the hydrogen peroxide (H2O2) concentration and antioxidant activity in tomato plants. The biochemical analyses of Ulva lactuca extract and fractions showed that the RF recorded the highest concentration of glycine betaine, while the ME was the part with the highest concentrations of total phenols and soluble sugars. This suggests that these compounds might play a key role in the mechanism by which seaweed extracts mitigate salinity stress on plants. Full article
(This article belongs to the Special Issue Biostimulants as Growth Promoting and Stress Protecting Compounds)
Show Figures

Figure 1

22 pages, 1584 KiB  
Article
Green Process Engineering as the Key to Future Processes
by Dipesh Patel, Suela Kellici and Basudeb Saha
Processes 2014, 2(1), 311-332; https://doi.org/10.3390/pr2010311 - 19 Mar 2014
Cited by 30 | Viewed by 14667
Abstract
Growing concern for the environment, increasing stringent standards for the release of chemicals into the environment and economic competiveness have led to more environmentally friendly approaches that have resulted in greater pollution prevention via waste reduction and efficiency maximisation. Green process engineering (GPE) [...] Read more.
Growing concern for the environment, increasing stringent standards for the release of chemicals into the environment and economic competiveness have led to more environmentally friendly approaches that have resulted in greater pollution prevention via waste reduction and efficiency maximisation. Green process engineering (GPE) is an important tool that could make significant contributions in the drive toward making hazardous and wasteful processes more sustainable for the benefit of the economy, environment and society. This article highlights the guidelines that could be used by scientists and engineers for designing new materials, products, processes and systems. Few examples of current and future applications of GPE, particularly in the areas of biofuels, supercritical fluids, multi-functional reactors and catalytic processes, have been presented. Full article
Show Figures

Figure 1

Back to TopTop