Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = green and low-carbon utilization efficiency of cultivated land

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2051 KB  
Article
Study on the Impact and Mechanism of Cultivated Land Transfer on Grain Green Total Factor Productivity in China
by Pan Zhang, Jiayi Zhang, Suxin Hu, Changjiang Ma, Shasha Lu and Xiankang Li
Sustainability 2026, 18(1), 441; https://doi.org/10.3390/su18010441 - 1 Jan 2026
Viewed by 308
Abstract
Exploring the impact of cultivated land transfer on grain green total factor productivity is of great significance in promoting efficient and low-carbon utilization of arable land and green and high-quality development of grain production in China. Based on the panel data of 30 [...] Read more.
Exploring the impact of cultivated land transfer on grain green total factor productivity is of great significance in promoting efficient and low-carbon utilization of arable land and green and high-quality development of grain production in China. Based on the panel data of 30 provincial-level administrative regions in China from 2006 to 2022, this study employed the EBM model, Tobit model and mediation effect model to measure grain green total factor productivity across provinces, analyze its spatiotemporal evolution trends, and explore the influence and mechanisms of cultivated land transfer on the grain green total factor productivity. The findings revealed that: (i) The overall level of China’s grain green total factor productivity was relatively low, though it exhibited some improvement and regional differences during the sample period, with the highest level in grain-producing areas, followed by production-marketing balance areas, and the lowest level in grain-marketing areas. (ii) Cultivated land transfer had a significant positive impact on grain green total factor productivity. However, an excessively large scale of transferred cultivated land may also inhibit efficiency improvements. (iii) The impact of cultivated land transfer on grain green total factor productivity showed notable regional heterogeneity. In terms of coefficient magnitude, the impact was greater in production-marketing balance areas than in grain-producing areas, while it was not significant in major grain-marketing areas. The effect was stronger in the western region compared to the eastern and central regions. (iv) Cultivated land transfer could improve grain green total factor productivity through large-scale management of cultivated land, large-scale management of services and green production technology. Further analysis indicated a synergistic interaction between scale management and technological progress in green production within these pathways. To enhance grain green total factor productivity, it is essential to implement region-specific policies for cultivated land transfer and scale operations that account for local geographical and agricultural conditions. Specifically, policymakers should facilitate the integration of land scale management with service scale operation, while simultaneously promoting the coordinated advancement of scale operation and green production technology. Full article
Show Figures

Figure 1

21 pages, 3033 KB  
Article
Spatio-Temporal Patterns and Decoupling Analysis of Land Use-Related Carbon Emissions in Jilin Province
by Wenwen Lv and Yan Liu
Sustainability 2025, 17(22), 10377; https://doi.org/10.3390/su172210377 - 20 Nov 2025
Cited by 1 | Viewed by 469
Abstract
Land use change is a key driver of regional carbon emissions. Understanding the mechanisms through which regional land use changes influence carbon emissions, as well as their spatiotemporal evolution, is of great significance for the optimization of land use structure and the formulation [...] Read more.
Land use change is a key driver of regional carbon emissions. Understanding the mechanisms through which regional land use changes influence carbon emissions, as well as their spatiotemporal evolution, is of great significance for the optimization of land use structure and the formulation of low-carbon policies. This study, based on land use data and socio-economic data from 2002 to 2022, combines decoupling analysis models with carbon carrying capacity assessment frameworks to systematically analyze the dynamic evolution of carbon emissions from land use in Jilin Province. The results show the following: (1) From 2002 to 2022, the cultivated land area in Jilin Province remained stable and accounted for the largest proportion; the areas of water bodies and construction land expanded, while forest, grassland, and unutilized land continued to decline. (2) Total carbon emissions exhibited a “growth-stabilization-slight decline” trend, with construction land contributing the most to emissions. Spatially, carbon emissions were concentrated in the central region with Changchun at its core. (3) The overall carbon ecological carrying capacity of Jilin Province showed a fluctuating upward trend, with notable differences in carbon ecological carrying capacity across cities. (4) Cultivated land showed the highest correlation with carbon emissions, followed by woodland. The decoupling relationship between carbon emissions and economic development exhibited phase fluctuations, evolving from weak decoupling to strong decoupling and then transitioning back to weak negative decoupling. Therefore, it is recommended that effective measures be adopted to curb the excessive expansion of construction land, enhance ecological carbon sink functions, and facilitate the transformation of cultivated land from a carbon source to a carbon sink. This will promote the efficient and green utilization of land resources, advance the synergistic progress of economic development and environmental protection, and achieve the goal of regional sustainable development. Full article
Show Figures

Figure 1

28 pages, 2546 KB  
Article
Measurement, Dynamic Evolution, and Spatial Convergence of the Efficiency of the Green and Low-Carbon Utilization of Cultivated Land Under the Goal of Food and Ecological “Double Security”: Empirical Evidence from the Huaihe River Ecological Economic Belt of China
by Hao Yu and Yuanzhu Wei
Sustainability 2025, 17(16), 7242; https://doi.org/10.3390/su17167242 - 11 Aug 2025
Cited by 1 | Viewed by 710
Abstract
Under the “double security” goal of achieving both food security and ecological protection, this study explores the green and low-carbon utilization efficiency of cultivated land (GLCUECL) in the Huaihe River Ecological Economic Belt (HREEB). This study identifies the spatiotemporal evolution characteristics and trends, [...] Read more.
Under the “double security” goal of achieving both food security and ecological protection, this study explores the green and low-carbon utilization efficiency of cultivated land (GLCUECL) in the Huaihe River Ecological Economic Belt (HREEB). This study identifies the spatiotemporal evolution characteristics and trends, promoting the green, low-carbon, and sustainable utilization of arable land resources in the HREEB, thus contributing to regional and national food and ecological security. Using a global super-efficiency EBM framework that accounts for undesirable outputs, as well as the GML index, the researchers measured and decomposed the GLCUECL in 25 prefecture-level cities of the HREEB from 2005 to 2021. The Theil index and kernel density estimation were applied to analyze regional disparities and changing developmental traits. Spatial convergence and divergence were assessed using the coefficient of variation and spatial convergence models. Key findings include the following: (1) Over time, the GLCUECL in the HREEB exhibited an overall upward trend and a non-equilibrium characteristic, namely the “East Sea-river-lake Linkage Area (ESLA) > Midwest Inland Rising Area (MIRA) > Huaihe River Ecological Economic Belt (HREEB) > North Huaihai Economic Zone (NHEZ)”. The increase in the GML index of the GLCUECL is mainly attributable to a technical progress change. (2) The overall difference in the GLCUECL tends to decline, which is mainly attributable to the intra-regional differences. (3) The overall kernel density curves for the HREEB and its three sub-regions exhibited a “rightward shift” trend. Except for the expansion and polarization of the absolute difference in the GLCUECL in the NHEZ, the absolute difference in GLCUECL in other regions, such as the HREEB, ESLA, and MIRA, exhibited a decreasing trend. (4) Spatial convergence analysis revealed that only the NHEZ lacks σ-convergence, whereas all regions exhibited β-convergence. Moreover, factors such as rural economic development level, cultivated land resource endowment, agricultural subsidy policy, crop planting structure, and technological input exerted a heterogeneous effect on the change in the GLCUECL. Based on these findings, this study offers recommendations for improving GLCUECL in the HREEB. Our recommendations include the implementation of the concept of green new development, optimization of the institution supply, establishing a regional cooperation mechanism for green and low-carbon utilization of cultivated land, and formulation of differentiated paths for improving the green and low-carbon utilization efficiency of cultivated land according to local conditions. Full article
Show Figures

Figure 1

17 pages, 2618 KB  
Article
Coordination Analysis and Driving Factors of “Water-Land-Energy-Carbon” Coupling in Nine Provinces of the Yellow River Basin
by Daiwei Zhang, Ming Jing, Buhui Chang, Weiwei Chen, Ziming Li, Shuai Zhang and Ting Li
Water 2025, 17(8), 1138; https://doi.org/10.3390/w17081138 - 10 Apr 2025
Cited by 2 | Viewed by 802
Abstract
As an important ecological barrier and economic belt in China, the sustainable development of the Yellow River Basin (YRB) is of great significance to national ecological security and regional economic balance. Based on the coupled and coordinated development analysis of the water–soil–energy–carbon (W-L-E-C) [...] Read more.
As an important ecological barrier and economic belt in China, the sustainable development of the Yellow River Basin (YRB) is of great significance to national ecological security and regional economic balance. Based on the coupled and coordinated development analysis of the water–soil–energy–carbon (W-L-E-C) system in the provinces of the Yellow River Basin from 2002 to 2022, this study systematically analyzed the interaction relationship among the various factors through WLECNI index assessment, factor identification, and driving factor exploration. Thus, it fully reveals the spatiotemporal evolution law of regional coordinated development and its internal driving mechanism. It is found that the coordinated development of the W-L-E-C system in different provinces of the Yellow River Basin presents significant spatiotemporal differentiation, and its evolution process is influenced by multiple factors. It is found that the coordination of the YRB presents a significant spatial difference, and Inner Mongolia and Shaanxi, as high coordination areas, have achieved significant improvement in coordination, through ecological restoration and clean energy replacement, arable land intensification, and industrial water-saving technology, respectively. Shandong, Henan, and Shanxi in the middle coordination zone have made some achievements in industrial greening and water-saving technology promotion, but they are still restricted by industrial carbon emissions and land resource pressure. The Ningxia and Gansu regions with low coordination are slow to improve their coordination due to water resource overload and inefficient energy utilization. Barrier factor analysis shows that the water resources utilization rate (W4), impervious area (L4), energy consumption per unit GDP (E1), and carbon emissions from energy consumption (C3) are the core factors restricting coordination. Among them, the water quality compliance rate (W5) of Shanxi and Henan is very low, and the impervious area (L4) of Shandong is a prominent problem. The interaction analysis of the driving factors showed that there were significant interactions between water resource use and ecological protection (W-E), land resource and energy use (L-E), and carbon emissions and ecosystem (C-E). Inner Mongolia, Shaanxi, and Shandong achieved coordinated improvement through “scenic energy + ecological restoration”, cultivated land protection, and industrial greening. Shanxi, Henan, and Ningxia are constrained by the “W-L-E-C” complex obstacles. In the future, the Yellow River Basin should implement the following zoning control strategy: for the areas with high coordination, it should focus on consolidating the synergistic advantages of ecological protection and energy development; water-saving technology and energy consumption reduction measures should be promoted in the middle coordination area. In the low coordination area, efforts should be made to solve the problem of resource overload, and the current situation of low resource utilization efficiency should be improved by improving the utilization rate of recycled water and applying photovoltaic sand control technology. This differentiated governance plan will effectively enhance the level of coordinated development across the basin. The research results provide a decision-making framework of “zoning regulation, system optimization and dynamic monitoring” for the sustainable development of the YRB, and provide a scientific basis for achieving high-quality development of the basin. Full article
Show Figures

Figure 1

26 pages, 28640 KB  
Article
Analysis of Dynamic Evolution and Driving Factors of Low-Carbon Utilization Efficiency of Cultivated Land in China
by Yuan Tian and Xiuyi Shi
Agriculture 2024, 14(4), 526; https://doi.org/10.3390/agriculture14040526 - 26 Mar 2024
Cited by 7 | Viewed by 2310
Abstract
In order to cope with global climate warming, measurement of the low-carbon utilization efficiency (LCUE) of cultivated land, considering carbon sink and carbon emission effects, is proposed. To address this, based on the data of 30 provinces in China, this study conducts a [...] Read more.
In order to cope with global climate warming, measurement of the low-carbon utilization efficiency (LCUE) of cultivated land, considering carbon sink and carbon emission effects, is proposed. To address this, based on the data of 30 provinces in China, this study conducts a LCUE evaluation system by the MinDS-U-M productivity index model in order to analyze the spatiotemporal patterns and driving factors of LCUE with the geographic detector model and GTWR model. The results show the following: (1) Over the past 20 years, the average LCUE value exhibits a slow increasing trend from 2001 to 2021, which ranges from 0.9864 to 1.0272. Provinces with mid-level LCUE ranging from 1.0000 to 1.0990 account for the highest proportion in each period. (2) The annual growth rate of LCUE in the central region is the highest, where the promotion of green technology and farmland protection policies have played important roles. (3) According to the Geodetector analysis, urbanization rate (UR), irrigation index (IR), grain output value (GOV), precipitation (PR), arable land area (ALA), and environmental pollution control (EPC) are important drivers of the spatial difference of LCUE. (4) The GTWR model shows that the positive effects of ALA and SRT have always been concentrated in the main grain-producing areas over time. UR and PR have strong explanatory power for the space/time differentiation of LCUE, especially in eastern coastal regions. IR has an increasing effect on LCUE in the Western region, and the positive effect of EPC on the LCUE is concentrated in the central region. In order to coordinate regional LCUE contradictions, it is suggested to be wary of land resource damage caused by economic development, warn about the impacts of climate change, and strengthen the supervision of land remediation projects in order to achieve sustainable land management. Full article
(This article belongs to the Special Issue Agricultural Policies toward Sustainable Farm Development)
Show Figures

Figure 1

18 pages, 2895 KB  
Article
Relationship of Cooperative Management and Green and Low-Carbon Transition of Agriculture and Its Impacts: A Case Study of the Western Tarim River Basin
by Guangyan Ran, Guangyao Wang, Huijuan Du and Mi Lv
Sustainability 2023, 15(11), 8900; https://doi.org/10.3390/su15118900 - 31 May 2023
Cited by 13 | Viewed by 2207
Abstract
Clarifying the relationship between cooperative management and cultivated land use eco-efficiency (LUEE) is of great significance to promoting the green and low-carbon transition of agriculture. To explore the role of cooperative management in the green and low-carbon transition of agriculture of smallholder farmers [...] Read more.
Clarifying the relationship between cooperative management and cultivated land use eco-efficiency (LUEE) is of great significance to promoting the green and low-carbon transition of agriculture. To explore the role of cooperative management in the green and low-carbon transition of agriculture of smallholder farmers in the western Tarim River Basin, in this study, based on the field survey data of 444 farmers in 2021, the carbon emissions of cultivated land were used to measure the LUEE with the slack-based model (SBM) with undesirable outputs. Then, propensity score matching (PSM) was used to test the relationship between cooperative management and LUEE. Additionally, the mediating effect of farmers’ green development willingness (FGDW) and the moderating effect of farmers’ part-time off-farm employment (POE) on the relationship was explored. The present study hypothesized that joining cooperatives has an improving effect on the LUEE, which can be achieved by increasing FGDW, and this effect can be enhanced by farmers’ POE. The results show that: (1) The LUEE was generally low (average LUEE value: 0.2678), and there was a significant difference between farmer households (the difference between the maximum and minimum values was as high as 2.8716). (2) Cooperative management had a significant improving effect on the LUEE. The LUEE of cooperative farmers (ACF) increased by 8.6% compared with that of non-cooperative farmers (NACF). (3) Joining a cooperative could improve the LUEE by improving FGDW. (4) POE could enhance the improving effect of cooperative management on the LUEE. Overall, all three hypotheses were supported: cooperative management could achieve scale effects that small farmers cannot achieve, which had a positive effect on improving the LUEE. This study provides a new ecological perspective for the analysis of the relationship between agricultural cooperatives and LUEE and decision-making reference for the rational utilization of cultivated land in northwest China. Full article
Show Figures

Figure 1

Back to TopTop