Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = graphene-based biomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 6969 KB  
Review
Nanotechnology for Biomedical Applications: Synthesis and Properties of Ti-Based Nanocomposites
by Maciej Tulinski, Mieczyslawa U. Jurczyk, Katarzyna Arkusz, Marek Nowak and Mieczyslaw Jurczyk
Nanomaterials 2025, 15(18), 1417; https://doi.org/10.3390/nano15181417 - 15 Sep 2025
Viewed by 556
Abstract
Nanobiocomposites are a class of biomaterials that include at least one phase with constituents in the nanometer range. Nanobiocomposites, a new class of materials formed by combining natural and inorganic materials (metals, ceramics, polymers, and graphene) at the nanoscale dimension, are expected to [...] Read more.
Nanobiocomposites are a class of biomaterials that include at least one phase with constituents in the nanometer range. Nanobiocomposites, a new class of materials formed by combining natural and inorganic materials (metals, ceramics, polymers, and graphene) at the nanoscale dimension, are expected to revolutionize tissue engineering and bone implant applications because of their enhanced corrosion resistance, mechanical properties, biocompatibility, and antimicrobial activity. Titanium-based nanocomposites are gaining attention in biomedical applications due to their exceptional biocompatibility, corrosion resistance, and mechanical properties. These composites typically consist of a titanium or titanium alloy matrix that is embedded with nanoscale bioactive phases, such as hydroxyapatite, bioactive glass, polymers, or carbon-based nanomaterials. Common methods for synthesizing Ti-based nanobiocomposites and their parts, including bottom-up and top-down approaches, are presented and discussed. The synthesis conditions and appropriate functionalization influence the final properties of nanobiomaterials. By modifying the surface roughness at the nanoscale level, composite implants can be enhanced to improve tissue integration, leading to increased cell adhesion and protein adsorption. The objective of this review is to illustrate the most recent research on the synthesis and properties of Ti-based biocomposites and their scaffolds. Full article
(This article belongs to the Special Issue Nanobiocomposite Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

15 pages, 1228 KB  
Review
Antimicrobial Effect of Graphene in Dentistry: A Scoping Review
by Ricardo Martuci, Susana João Oliveira, Mateus Martuci, José Reis-Campos and Maria Helena Figueiral
Dent. J. 2025, 13(8), 355; https://doi.org/10.3390/dj13080355 - 5 Aug 2025
Viewed by 848
Abstract
Background/Objectives: The functionalization of various forms of graphene, such as graphene nanoplatelets, graphene oxide, and reduced graphene oxide, in biomaterials is a promising strategy in dentistry, particularly regarding their antimicrobial potential. However, conclusive studies on the toxicity and biocompatibility of graphene-based materials [...] Read more.
Background/Objectives: The functionalization of various forms of graphene, such as graphene nanoplatelets, graphene oxide, and reduced graphene oxide, in biomaterials is a promising strategy in dentistry, particularly regarding their antimicrobial potential. However, conclusive studies on the toxicity and biocompatibility of graphene-based materials remain limited, and standardized guidelines for their production, handling, and dental applications are still lacking. This scoping review aims to map the available studies on various types of graphene, synthesize evidence on their antimicrobial effectiveness, and describe the main biological responses when functionalized in dental biomaterials. Methods: An electronic search was conducted in the Clarivate, PubMed, and Scopus databases using the descriptors as follows: ‘graphene’ AND ‘antimicrobial effect’ AND ‘bactericidal effect’ AND (‘graphene oxide’ OR ‘dental biofilm’ OR ‘antibacterial properties’ OR ‘dental materials’). Article screening and eligibility assessment were performed based on predefined inclusion and exclusion criteria, following the PRISMA-ScR guidelines. Results: The search identified 793 articles. After removing duplicates, applying the eligibility criteria, and performing a full-text analysis of 64 articles, 21 studies were included in the review. Graphene oxide, particularly at low concentrations, was the most commonly studied graphene variant, demonstrating significant antimicrobial efficacy against S. mutans, S. faecalis, E. coli, P. aeruginosa, and C. albicans. Both mechanical and chemical mechanisms have been linked to the biological responses of graphene-doped biomaterials. The biocompatibility and cytotoxicity of these compounds remain controversial, with some studies reporting favorable outcomes, while others raise significant concerns. Conclusions: Graphene shows great promise as an antimicrobial agent in dental biomaterials. Despite encouraging results, more in vitro and in vivo studies are needed to better understand its biocompatibility and cytotoxicity in dental applications. Additionally, standardized production protocols, clearly defined clinical applications in dentistry, and regulatory guidelines from the World Health Organization concerning handling procedures and occupational risks remain necessary. Full article
(This article belongs to the Special Issue Feature Review Papers in Dentistry)
Show Figures

Figure 1

24 pages, 39013 KB  
Article
Computational Assessment of Biocompatibility and Toxicity of Graphene and Its Derivatives for Dental Adhesives
by Ravinder Saini
Oral 2025, 5(1), 4; https://doi.org/10.3390/oral5010004 - 14 Jan 2025
Viewed by 1636
Abstract
Background/Objectives: Graphene and its derivatives have garnered attention for their unique properties that could enhance dental biomaterials. Understanding their interactions with biological systems is crucial for optimizing their application in dentistry. This study aimed to comprehensively evaluate the biocompatibility, molecular interactions, and toxicity [...] Read more.
Background/Objectives: Graphene and its derivatives have garnered attention for their unique properties that could enhance dental biomaterials. Understanding their interactions with biological systems is crucial for optimizing their application in dentistry. This study aimed to comprehensively evaluate the biocompatibility, molecular interactions, and toxicity profiles of graphene and its derivatives for potential dental applications using in silico approaches. Methods: The study employed molecular-docking simulations, 100 ns molecular dynamics (MD) simulations, pharmacophore modeling, and in silico toxicity assessments. Key bone-related proteins and receptors were selected to assess the potential of graphene-based materials in dental restorative and regenerative therapies. Results: Molecular-docking simulations revealed strong interactions of Graphene Quantum Dots (GQDs) and sulfur-doped graphene with critical bone-related receptors, suggesting their potential for reinforcing dentin and promoting bone regeneration. MD simulations demonstrated stable complex formations, with occasional fluctuations indicating areas for material optimization. In silico toxicity assessments indicated favorable profiles for high-purity graphene and selected doped graphenes (nitrogen-, fluorine-, and sulfur-doped), while graphene oxide (GO) exhibited concerning toxicity levels, highlighting the importance of mitigating strategies. Conclusions: Graphene and its derivatives exhibit promising biocompatibility and molecular interaction profiles relevant to dental applications. Challenges such as GO’s toxicity and occasional instability in simulations suggest the need for further research into surface modifications and material refinement. These findings pave the way for advancing graphene-based dental materials toward clinical implementation, potentially revolutionizing dental prosthetics and treatments. Full article
Show Figures

Graphical abstract

18 pages, 18524 KB  
Article
A Graphene-Based Bioactive Product with a Non-Immunological Impact on Mononuclear Cell Populations from Healthy Volunteers
by María del Prado Lavín-López, Mónica Torres-Torresano, Eva María García-Cuesta, Blanca Soler-Palacios, Mercedes Griera, Martín Martínez-Rovira, José Antonio Martínez-Rovira, Diego Rodríguez-Puyol and Sergio de Frutos
Nanomaterials 2024, 14(23), 1945; https://doi.org/10.3390/nano14231945 - 4 Dec 2024
Cited by 1 | Viewed by 1203
Abstract
We previously described GMC, a graphene-based nanomaterial obtained from carbon nanofibers (CNFs), to be biologically compatible and functional for therapeutic purposes. GMC can reduce triglycerides’ content in vitro and in vivo and has other potential bio-functional effects on systemic cells and the potential [...] Read more.
We previously described GMC, a graphene-based nanomaterial obtained from carbon nanofibers (CNFs), to be biologically compatible and functional for therapeutic purposes. GMC can reduce triglycerides’ content in vitro and in vivo and has other potential bio-functional effects on systemic cells and the potential utility to be used in living systems. Here, immunoreactivity was evaluated by adding GMC in suspension at the biologically functional concentrations, ranging from 10 to 60 µg/mL, for one or several days, to cultured lymphocytes (T, B, NK), either in basal or under stimulating conditions, and monocytes that were derived under culture conditions to pro-inflammatory (GM-MØ) or anti-inflammatory (M-MØ) macrophages. All stirpes were obtained from human peripheral mononuclear cells (PBMCs) from anonymized healthy donors. The viability (necrosis, apoptosis) and immunological activity of each progeny was analyzed using either flow cytometry and/or other analytical determinations. A concentration of 10 to 60 µg/mL GMC did not affect lymphocytes’ viability, either in basal or active conditions, during one or more days of treatment. The viability and expression of the inflammatory interleukin IL-1β in the monocyte cell line THP-1 were not affected. Treatments with 10 or 20 µg/mL GMC on GM-MØ or M-MØ during or after their differentiation process promoted phagocytosis, but their viability and the release of the inflammatory marker activin A by GM-MØ were not affected. A concentration of 60 µg/mL GMC slightly increased macrophages’ death and activity in some culture conditions. The present work demonstrates that GMC is safe or has minimal immunological activity when used in suspension at low concentrations for pre-clinical or clinical settings. Its biocompatibility will depend on the dose, formulation or way of administration and opens up the possibility to consider GMC or other CNF-based biomaterials for innovative therapeutic strategies. Full article
(This article belongs to the Special Issue A Sustainable Future Using 2D and 1D Nanomaterials and Nanotechnology)
Show Figures

Figure 1

14 pages, 2510 KB  
Article
Non-Cytotoxic Graphene Nanoplatelets Upregulate Cell Proliferation and Self-Renewal Genes of Mesenchymal Stem Cells
by Natália Fontana Nicoletti, Daniel Rodrigo Marinowic, Daniele Perondi, João Ismael Budelon Gonçalves, Diego Piazza, Jaderson Costa da Costa and Asdrubal Falavigna
Int. J. Mol. Sci. 2024, 25(18), 9817; https://doi.org/10.3390/ijms25189817 - 11 Sep 2024
Cited by 6 | Viewed by 1922
Abstract
Graphene nanoplatelets (UGZ–1004) are emerging as a promising biomaterial in regenerative medicine. This study comprehensively evaluates UGZ–1004, focusing on its physical properties, cytotoxicity, intracellular interactions, and, notably, its effects on mesenchymal stem cells (MSCs). UGZ–1004 was characterized by lateral dimensions and layer counts [...] Read more.
Graphene nanoplatelets (UGZ–1004) are emerging as a promising biomaterial in regenerative medicine. This study comprehensively evaluates UGZ–1004, focusing on its physical properties, cytotoxicity, intracellular interactions, and, notably, its effects on mesenchymal stem cells (MSCs). UGZ–1004 was characterized by lateral dimensions and layer counts consistent with ISO standards and demonstrated a high carbon purity of 0.08%. Cytotoxicity assessments revealed that UGZ–1004 is non-toxic to various cell lines, including 3T3 fibroblasts, VERO kidney epithelial cells, BV–2 microglia, and MSCs, in accordance with ISO 10993–5:2020/2023 guidelines. The study focused on MSCs and revealed that UGZ–1004 supports their gene expression alterations related to self-renewal and proliferation. MSCs exposed to UGZ–1004 maintained their characteristic surface markers. Importantly, UGZ–1004 promoted significant upregulation of genes crucial for cell cycle regulation and DNA repair, such as CDK1, CDK2, and MDM2. This gene expression profile suggests that UGZ–1004 can enhance MSC self-renewal capabilities, ensuring robust cellular function and longevity. Moreover, UGZ–1004 exposure led to the downregulation of genes associated with tumor development, including CCND1 and TFDP1, mitigating potential tumorigenic risks. These findings underscore the potential of UGZ–1004 to not only bolster MSC proliferation but also enhance their self-renewal processes, which are critical for effective regenerative therapies. The study highlights the need for continued research into the long-term impacts of graphene nanoplatelets and their application in MSC-based regenerative medicine. Full article
(This article belongs to the Special Issue New Advances in Stem Cells in Human Health and Diseases)
Show Figures

Graphical abstract

15 pages, 7777 KB  
Article
Nanoarchitectonics and Biological Properties of Nanocomposite Thermosensitive Chitosan Hydrogels Obtained with the Use of Uridine 5′-Monophosphate Disodium Salt
by Katarzyna Pieklarz, Grzegorz Galita, Ireneusz Majsterek, Piotr Owczarz and Zofia Modrzejewska
Int. J. Mol. Sci. 2024, 25(11), 5989; https://doi.org/10.3390/ijms25115989 - 30 May 2024
Cited by 3 | Viewed by 1419
Abstract
Currently, an important group of biomaterials used in the research in the field of tissue engineering is thermosensitive chitosan hydrogels. Their main advantage is the possibility of introducing their precursors (sols) into the implantation site using a minimally invasive method—by injection. In this [...] Read more.
Currently, an important group of biomaterials used in the research in the field of tissue engineering is thermosensitive chitosan hydrogels. Their main advantage is the possibility of introducing their precursors (sols) into the implantation site using a minimally invasive method—by injection. In this publication, the results of studies on the new chitosan structures in the form of thermosensitive hydrogels containing graphene oxide as a nanofiller are presented. These systems were prepared from chitosan lactate and chitosan chloride solutions with the use of a salt of pyrimidine nucleotide—uridine 5′-monophosphate disodium salt—as the cross-linking agent. In order to perform the characterization of the developed hydrogels, the sol–gel transition temperature of the colloidal systems was first determined based on rheological measurements. The hydrogels were also analyzed using FTIR spectroscopy and SEM. Biological studies assessed the cytotoxicity (resazurin assay) and genotoxicity (alkaline version of the comet assay) of the nanocomposite chitosan hydrogels against normal human BJ fibroblasts. The conducted research allowed us to conclude that the developed hydrogels containing graphene oxide are an attractive material for potential use as scaffolds for the regeneration of damaged tissues. Full article
(This article belongs to the Special Issue Chitin: Structure, Modifications and Applications)
Show Figures

Figure 1

16 pages, 9563 KB  
Article
Antimicrobial and Antibiofilm Potential of Green-Synthesized Graphene–Silver Nanocomposite against Multidrug-Resistant Nosocomial Pathogens
by Preeti Negi, Jatin Chadha, Kusum Harjai, Vijay Singh Gondil, Seema Kumari and Khem Raj
Biomedicines 2024, 12(5), 1104; https://doi.org/10.3390/biomedicines12051104 - 16 May 2024
Cited by 8 | Viewed by 2820
Abstract
Hospital-acquired infections (HAIs) pose a significant risk to global health, impacting millions of individuals globally. These infections have increased rates of morbidity and mortality due to the prevalence of widespread antimicrobial resistance (AMR). Graphene-based nanoparticles (GBNs) are known to possess extensive antimicrobial properties [...] Read more.
Hospital-acquired infections (HAIs) pose a significant risk to global health, impacting millions of individuals globally. These infections have increased rates of morbidity and mortality due to the prevalence of widespread antimicrobial resistance (AMR). Graphene-based nanoparticles (GBNs) are known to possess extensive antimicrobial properties by inflicting damage to the cell membrane, suppressing virulence, and inhibiting microbial biofilms. Developing alternative therapies for HAIs and addressing AMR can be made easier and more affordable by combining nanoparticles with medicinal plants harboring antimicrobial properties. Hence, this study was undertaken to develop a novel graphene–silver nanocomposite via green synthesis using Trillium govanianum plant extract as a reducing agent. The resulting nanocomposite comprised silver nanoparticles embedded in graphene sheets. The antibacterial and antifungal properties of graphene–silver nanocomposites were investigated against several nosocomial pathogens, namely, Candida auris, Candida glabrata, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The nanocomposite displayed broad-range antimicrobial potential against the test pathogens, with minimum inhibitory concentrations (MICs) ranging between 31.25 and 125.0 µg/mL, and biofilm inhibition up to 80–96%. Moreover, nanocomposite-functionalized urinary catheters demonstrated hemocompatibility towards sheep erythrocytes and imparted anti-fouling activity to the biomaterial, while also displaying biocompatibility towards HEK 293 cells. Collectively, this investigation highlights the possible application of green-synthesized GBNs as an effective alternative to conventional antibiotics for combating multidrug-resistant pathogens. Full article
(This article belongs to the Special Issue Drug-Resistant Bacterial Infections and Alternative Therapies)
Show Figures

Figure 1

19 pages, 9180 KB  
Article
In-Situ Grown Nanohydroxyapatite on Graphene Oxide Nanoscrolls for Modulated Physicochemical Properties of Poly (Caprolactone) Composites
by Lillian Tsitsi Mambiri, Gabrielle Broussard, Ja’Caleb Smith and Dilip Depan
Macromol 2024, 4(2), 285-303; https://doi.org/10.3390/macromol4020017 - 11 May 2024
Cited by 5 | Viewed by 1469
Abstract
Polymer composites with exceptional bioactivity and controlled in vitro degradation are crucial in tissue engineering. A promising approach involves combining graphene oxide nanoscrolls (GONSs) and nanohydroxyapatite (nHA) with polycaprolactone (PCL). The synergy of these components enables the mineralization of nHA within GONSs through [...] Read more.
Polymer composites with exceptional bioactivity and controlled in vitro degradation are crucial in tissue engineering. A promising approach involves combining graphene oxide nanoscrolls (GONSs) and nanohydroxyapatite (nHA) with polycaprolactone (PCL). The synergy of these components enables the mineralization of nHA within GONSs through a two-step process: first, oxygen-containing anionic groups in the GONSs anchor Ca2+ ions, followed by the formation of dispersed nHA through chelation with CaHPO42− via electrovalent bonding. A thermal analysis of the scaffolds’ morphology and microstructure was conducted via DSC and SEM imaging. Its enhanced physical properties are attributed to interactions between PCL and nHA–GONSs, as confirmed by an FTIR analysis showing strong interfacial bonding. Enzymatic degradation studies demonstrated reduced weight loss in PCL–nHA–GONS composites over 21 days, highlighting GONSs’ role in enhancing dimensional stability and reinforcement. An EDS analysis post-degradation revealed increased Ca2+ deposition on scaffolds with nHA–GONSs, indicating improved biopolymer–bioceramic interaction facilitated by the GONSs’ scrolled structure. This research offers a straightforward yet effective method for functionalizing GONSs with biologically beneficial nHA, potentially advancing graphene-based biomaterial development. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Graphical abstract

24 pages, 3440 KB  
Article
Graphene Oxide (GO)-Based Bioink with Enhanced 3D Printability and Mechanical Properties for Tissue Engineering Applications
by Katarzyna Kosowska, Paulina Korycka, Kamila Jankowska-Snopkiewicz, Joanna Gierałtowska, Milena Czajka, Katarzyna Florys-Jankowska, Magdalena Dec, Agnieszka Romanik-Chruścielewska, Maciej Małecki, Kinga Westphal, Michał Wszoła and Marta Klak
Nanomaterials 2024, 14(9), 760; https://doi.org/10.3390/nano14090760 - 26 Apr 2024
Cited by 8 | Viewed by 2964
Abstract
Currently, a major challenge in material engineering is to develop a cell-safe biomaterial with significant utility in processing technology such as 3D bioprinting. The main goal of this work was to optimize the composition of a new graphene oxide (GO)-based bioink containing additional [...] Read more.
Currently, a major challenge in material engineering is to develop a cell-safe biomaterial with significant utility in processing technology such as 3D bioprinting. The main goal of this work was to optimize the composition of a new graphene oxide (GO)-based bioink containing additional extracellular matrix (ECM) with unique properties that may find application in 3D bioprinting of biomimetic scaffolds. The experimental work evaluated functional properties such as viscosity and complex modulus, printability, mechanical strength, elasticity, degradation and absorbability, as well as biological properties such as cytotoxicity and cell response after exposure to a biomaterial. The findings demonstrated that the inclusion of GO had no substantial impact on the rheological properties and printability, but it did enhance the mechanical properties. This enhancement is crucial for the advancement of 3D scaffolds that are resilient to deformation and promote their utilization in tissue engineering investigations. Furthermore, GO-based hydrogels exhibited much greater swelling, absorbability and degradation compared to non-GO-based bioink. Additionally, these biomaterials showed lower cytotoxicity. Due to its properties, it is recommended to use bioink containing GO for bioprinting functional tissue models with the vascular system, e.g., for testing drugs or hard tissue models. Full article
Show Figures

Graphical abstract

17 pages, 1640 KB  
Review
Novel Photothermal Graphene-Based Hydrogels in Biomedical Applications
by Alexa-Maria Croitoru, Denisa Ficai and Anton Ficai
Polymers 2024, 16(8), 1098; https://doi.org/10.3390/polym16081098 - 15 Apr 2024
Cited by 6 | Viewed by 3917
Abstract
In the last decade, photothermal therapy (PTT) has attracted tremendous attention because it is non-invasive, shows high efficiency and antibacterial activity, and minimizes drug side effects. Previous studies demonstrated that PTT can effectively inhibit the growth of bacteria and promotes cell proliferation, accelerating [...] Read more.
In the last decade, photothermal therapy (PTT) has attracted tremendous attention because it is non-invasive, shows high efficiency and antibacterial activity, and minimizes drug side effects. Previous studies demonstrated that PTT can effectively inhibit the growth of bacteria and promotes cell proliferation, accelerating wound healing and tissue regeneration. Among different NIR-responsive biomaterials, graphene-based hydrogels with photothermal properties are considered as the best candidates for biomedical applications, due to their excellent properties. This review summarizes the current advances in the development of innovative graphene-based hydrogels for PTT-based biomedical applications. Also, the information about photothermal properties and the potential applications of graphene-based hydrogels in biomedical therapies are provided. These findings provide a great potential for supporting their applications in photothermal biomedicine. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymer Scaffolds for Tissue Engineering II)
Show Figures

Figure 1

25 pages, 10801 KB  
Article
Effect of Gelatin Coating and GO Incorporation on the Properties and Degradability of Electrospun PCL Scaffolds for Bone Tissue Regeneration
by Carlos Loyo, Alexander Cordoba, Humberto Palza, Daniel Canales, Francisco Melo, Juan F. Vivanco, Raúl Vallejos Baier, Carola Millán, Teresa Corrales and Paula A. Zapata
Polymers 2024, 16(1), 129; https://doi.org/10.3390/polym16010129 - 30 Dec 2023
Cited by 25 | Viewed by 3386
Abstract
Polymer-based nanocomposites such as polycaprolactone/graphene oxide (PCL/GO) have emerged as alternatives for bone tissue engineering (BTE) applications. The objective of this research was to investigate the impact of a gelatin (Gt) coating on the degradability and different properties of PCL nanofibrous scaffolds fabricated [...] Read more.
Polymer-based nanocomposites such as polycaprolactone/graphene oxide (PCL/GO) have emerged as alternatives for bone tissue engineering (BTE) applications. The objective of this research was to investigate the impact of a gelatin (Gt) coating on the degradability and different properties of PCL nanofibrous scaffolds fabricated by an electrospinning technique with 1 and 2 wt% GO. Uniform PCL/GO fibers were obtained with a beadless structure and rough surface. PCL/GO scaffolds exhibited an increase in their crystallization temperature (Tc), attributed to GO, which acted as a nucleation agent. Young’s modulus increased by 32 and 63% for the incorporation of 1 and 2 wt% GO, respectively, in comparison with neat PCL. A homogeneous Gt coating was further applied to these fibers, with incorporations as high as 24.7 wt%. The introduction of the Gt coating improved the hydrophilicity and degradability of the scaffolds. Bioactivity analysis revealed that the hydroxyapatite crystals were deposited on the Gt-coated scaffolds, which made them different from their uncoated counterparts. Our results showed the synergic effect of Gt and GO in enhancing the multifunctionality of the PCL, in particular the degradability rate, bioactivity, and cell adhesion and proliferation of hGMSC cells, making it an interesting biomaterial for BTE. Full article
(This article belongs to the Special Issue Degradation of Plastics)
Show Figures

Figure 1

17 pages, 2763 KB  
Review
Graphene-Based Composites for Biomedical Applications: Surface Modification for Enhanced Antimicrobial Activity and Biocompatibility
by Rita Teixeira-Santos, Samuel Belo, Rita Vieira, Filipe J. M. Mergulhão and Luciana C. Gomes
Biomolecules 2023, 13(11), 1571; https://doi.org/10.3390/biom13111571 - 24 Oct 2023
Cited by 21 | Viewed by 4548
Abstract
The application of graphene-based materials in medicine has led to significant technological breakthroughs. The remarkable properties of these carbon materials and their potential for functionalization with various molecules and compounds make them highly attractive for numerous medical applications. To enhance their functionality and [...] Read more.
The application of graphene-based materials in medicine has led to significant technological breakthroughs. The remarkable properties of these carbon materials and their potential for functionalization with various molecules and compounds make them highly attractive for numerous medical applications. To enhance their functionality and applicability, extensive research has been conducted on surface modification of graphene (GN) and its derivatives, including modifications with antimicrobials, metals, polymers, and natural compounds. This review aims to discuss recent and relevant studies related to advancements in the formulation of graphene composites, addressing their antimicrobial and/or antibiofilm properties and evaluating their biocompatibility, with a primary focus on their biomedical applications. It was concluded that GN surface modification, particularly with compounds intrinsically active against bacteria (e.g., antimicrobial peptides, silver and copper nanomaterials, and chitosan), has resulted in biomaterials with improved antimicrobial performance. Furthermore, the association of GN materials with non-natural polymers provides composites with increased biocompatibility when interfaced with human tissues, although with slightly lower antimicrobial efficacy. However, it is crucial to highlight that while modified GN materials hold huge potential, their widespread use in the medical field is still undergoing research and development. Comprehensive studies on safety, long-term effects, and stability are essential before their adoption in real-world medical scenarios. Full article
Show Figures

Figure 1

14 pages, 3526 KB  
Article
The Synergistic Effect of Electrical Stimulation and Dermal Fibroblast Cells-Laden 3D Conductive Hydrogel for Full-Thickness Wound Healing
by Yen-Hong Lin, En-Wei Liu, Yun-Jhen Lin, Hooi Yee Ng, Jian-Jr Lee and Tuan-Ti Hsu
Int. J. Mol. Sci. 2023, 24(14), 11698; https://doi.org/10.3390/ijms241411698 - 20 Jul 2023
Cited by 9 | Viewed by 3385
Abstract
Clinically, most patients with poor wound healing suffer from generalized skin damage, usually accompanied by other complications, so developing therapeutic strategies for difficult wound healing has remained extremely challenging until now. Current studies have indicated that electrical stimulation (ES) to cutaneous lesions enhances [...] Read more.
Clinically, most patients with poor wound healing suffer from generalized skin damage, usually accompanied by other complications, so developing therapeutic strategies for difficult wound healing has remained extremely challenging until now. Current studies have indicated that electrical stimulation (ES) to cutaneous lesions enhances skin regeneration by activating intracellular signaling cascades and secreting skin regeneration-related cytokine. In this study, we designed different concentrations of graphene in gelatin-methacrylate (GelMa) to form the conductive composite commonly used in wound healing because of its efficiency compared to other conductive thermo-elastic materials. The results demonstrated the successful addition of graphene to GelMa while retaining the original physicochemical properties of the GelMa bioink. In addition, the incorporation of graphene increased the interactions between these two biomaterials, leading to an increase in mechanical properties, improvement in the swelling ratio, and the regulation of degradation characteristics of the biocomposite scaffolds. Moreover, the scaffolds exhibited excellent electrical conductivity, increasing proliferation and wound healing-related growth factor secretion from human dermal fibroblasts. Overall, the HDF-laden 3D electroconductive GelMa/graphene-based hydrogels developed in this study are ideal biomaterials for skin regeneration applications in the future. Full article
Show Figures

Figure 1

22 pages, 7404 KB  
Article
Composites Based on Poly(ε-caprolactone) and Graphene Oxide Modified with Oligo/Poly(Glutamic Acid) as Biomaterials with Osteoconductive Properties
by Olga Solomakha, Mariia Stepanova, Iosif Gofman, Yulia Nashchekina, Maxim Rabchinskii, Alexey Nashchekin, Antonina Lavrentieva and Evgenia Korzhikova-Vlakh
Polymers 2023, 15(12), 2714; https://doi.org/10.3390/polym15122714 - 17 Jun 2023
Cited by 5 | Viewed by 2238
Abstract
The development of new biodegradable biomaterials with osteoconductive properties for bone tissue regeneration is one of the urgent tasks of modern medicine. In this study, we proposed the pathway for graphene oxide (GO) modification with oligo/poly(glutamic acid) (oligo/poly(Glu)) possessing osteoconductive properties. The modification [...] Read more.
The development of new biodegradable biomaterials with osteoconductive properties for bone tissue regeneration is one of the urgent tasks of modern medicine. In this study, we proposed the pathway for graphene oxide (GO) modification with oligo/poly(glutamic acid) (oligo/poly(Glu)) possessing osteoconductive properties. The modification was confirmed by a number of methods such as Fourier-transform infrared spectroscopy, quantitative amino acid HPLC analysis, thermogravimetric analysis, scanning electron microscopy, and dynamic and electrophoretic light scattering. Modified GO was used as a filler for poly(ε-caprolactone) (PCL) in the fabrication of composite films. The mechanical properties of the biocomposites were compared with those obtained for the PCL/GO composites. An 18–27% increase in elastic modulus was found for all composites containing modified GO. No significant cytotoxicity of the GO and its derivatives in human osteosarcoma cells (MG-63) was revealed. Moreover, the developed composites stimulated the proliferation of human mesenchymal stem cells (hMSCs) adhered to the surface of the films in comparison with unfilled PCL material. The osteoconductive properties of the PCL-based composites filled with GO modified with oligo/poly(Glu) were confirmed via alkaline phosphatase assay as well as calcein and alizarin red S staining after osteogenic differentiation of hMSC in vitro. Full article
(This article belongs to the Special Issue Advances in Bio-Based and Biodegradable Polymeric Composites II)
Show Figures

Graphical abstract

26 pages, 36467 KB  
Review
Recent Advances in Nanocellulose Aerogels for Efficient Heavy Metal and Dye Removal
by Azfaralariff Ahmad, Mohamad Anuar Kamaruddin, Abdul Khalil H.P.S., Esam Bashir Yahya, Syaifullah Muhammad, Samsul Rizal, Mardiana Idayu Ahmad, Indra Surya and C. K. Abdullah
Gels 2023, 9(5), 416; https://doi.org/10.3390/gels9050416 - 16 May 2023
Cited by 46 | Viewed by 5670
Abstract
Water pollution is a significant environmental issue that has emerged because of industrial and economic growth. Human activities such as industrial, agricultural, and technological practices have increased the levels of pollutants in the environment, causing harm to both the environment and public health. [...] Read more.
Water pollution is a significant environmental issue that has emerged because of industrial and economic growth. Human activities such as industrial, agricultural, and technological practices have increased the levels of pollutants in the environment, causing harm to both the environment and public health. Dyes and heavy metals are major contributors to water pollution. Organic dyes are a major concern because of their stability in water and their potential to absorb sunlight, increasing the temperature and disrupting the ecological balance. The presence of heavy metals in the production of textile dyes adds to the toxicity of the wastewater. Heavy metals are a global issue that can harm both human health and the environment and are mainly caused by urbanization and industrialization. To address this issue, researchers have focused on developing effective water treatment procedures, including adsorption, precipitation, and filtration. Among these methods, adsorption is a simple, efficient, and cheap method for removing organic dyes from water. Aerogels have shown potential as a promising adsorbent material because of their low density, high porosity, high surface area, low thermal and electrical conductivity, and ability to respond to external stimuli. Biomaterials such as cellulose, starch, chitosan, chitin, carrageenan, and graphene have been extensively studied for the production of sustainable aerogels for water treatment. Cellulose, which is abundant in nature, has received significant attention in recent years. This review highlights the potential of cellulose-based aerogels as a sustainable and efficient material for removing dyes and heavy metals from water during the treatment process. Full article
Show Figures

Graphical abstract

Back to TopTop