Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = graphene family nanomaterials (GFN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4923 KiB  
Article
Impacts of Micro/Nanoplastics Combined with Graphene Oxide on Lactuca sativa Seeds: Insights into Seedling Growth, Oxidative Stress, and Antioxidant Gene Expression
by Xuancheng Yuan, Fan Zhang and Zhuang Wang
Plants 2024, 13(24), 3466; https://doi.org/10.3390/plants13243466 - 11 Dec 2024
Cited by 3 | Viewed by 954
Abstract
Global pollution caused by micro/nanoplastics (M/NPs) is threatening agro-ecosystems, compromising food security and human health. Also, the increasing use of graphene-family nanomaterials (GFNs) in agricultural products has led to their widespread presence in agricultural systems. However, there is a large gap in the [...] Read more.
Global pollution caused by micro/nanoplastics (M/NPs) is threatening agro-ecosystems, compromising food security and human health. Also, the increasing use of graphene-family nanomaterials (GFNs) in agricultural products has led to their widespread presence in agricultural systems. However, there is a large gap in the literature on the combined effects of MNPs and GFNs on agricultural plants. This study was conducted to explore the individual and combined impacts of polystyrene microplastics (PSMPs, 1 μm) or nanoplastics (PSNPs, 50–100 nm), along with agriculturally relevant graphene oxide (GO), on the seed germination and seedling growth of lettuce (Lactuca sativa). The results showed that the combined effects of mixtures of PSMPs/PSNPs and GO exhibited both synergism and antagonism, depending on different toxicity indicators. The cellular mechanism underlying the combined effects on the roots and shoots of seedlings involved oxidative stress. Three SOD family genes, namely, Cu/Zn-SOD, Fe-SOD, and Mn-SOD, played an important role in regulating the antioxidant defense system of seedlings. The extent of their contribution to this regulation was associated with both the distinct plastic particle sizes and the specific tissue locations within the seedlings. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 1007 KiB  
Review
The Effects of Graphene-Family Nanomaterials on Plant Growth: A Review
by Xiao Zhang, Huifen Cao, Haiyan Wang, Jianguo Zhao, Kun Gao, Jun Qiao, Jingwei Li and Sai Ge
Nanomaterials 2022, 12(6), 936; https://doi.org/10.3390/nano12060936 - 12 Mar 2022
Cited by 39 | Viewed by 6653
Abstract
Numerous reports of graphene-family nanomaterials (GFNs) promoting plant growth have opened up a wide range of promising potential applications in agroforestry. However, several toxicity studies have raised growing concerns about the biosafety of GFNs. Although these studies have provided clues about the role [...] Read more.
Numerous reports of graphene-family nanomaterials (GFNs) promoting plant growth have opened up a wide range of promising potential applications in agroforestry. However, several toxicity studies have raised growing concerns about the biosafety of GFNs. Although these studies have provided clues about the role of GFNs from different perspectives (such as plant physiology, biochemistry, cytology, and molecular biology), the mechanisms by which GFNs affect plant growth remain poorly understood. In particular, a systematic collection of data regarding differentially expressed genes in response to GFN treatment has not been conducted. We summarize here the fate and biological effects of GFNs in plants. We propose that soil environments may be conducive to the positive effects of GFNs but may be detrimental to the absorption of GFNs. Alterations in plant physiology, biochemistry, cytological structure, and gene expression in response to GFN treatment are discussed. Coincidentally, many changes from the morphological to biochemical scales, which are caused by GFNs treatment, such as affecting root growth, disrupting cell membrane structure, and altering antioxidant systems and hormone concentrations, can all be mapped to gene expression level. This review provides a comprehensive understanding of the effects of GFNs on plant growth to promote their safe and efficient use. Full article
Show Figures

Figure 1

16 pages, 1071 KiB  
Review
Carbon Nanomaterials for Theranostic Use
by Izabela Kościk, Daniel Jankowski and Anna Jagusiak
C 2022, 8(1), 3; https://doi.org/10.3390/c8010003 - 31 Dec 2021
Cited by 38 | Viewed by 6151
Abstract
Based on statistics from the National Cancer Institute in the US, the rate of new cases of cancer is 442.4 per 100,000 men and women per year, and more than one-third do not survive the disease. Cancer diagnosis and treatment are the most [...] Read more.
Based on statistics from the National Cancer Institute in the US, the rate of new cases of cancer is 442.4 per 100,000 men and women per year, and more than one-third do not survive the disease. Cancer diagnosis and treatment are the most important challenges in modern medicine. The majority of cancer cases are diagnosed at an early stage. However, the possibility of simultaneous diagnosis and application of therapy (theranostics) will allow for acceleration and effectiveness of treatment. Conventional chemotherapy is not effective in reducing the chemoresistance and progression of various types of cancer. In addition, it causes side effects, which are mainly a result of incorrect drug distribution. Hence, new therapies are being explored as well as new drug delivery strategies. In this regard, nanotechnology has shown promise in the targeted delivery of therapeutics to cancer cells. This review looks at the latest advances in drug delivery-based diagnosis and therapy. Drug delivery nanosystems made of various types of carbon (graphene, fullerenes, and carbon nanotubes) are discussed. Their chemical properties, advantages, and disadvantages are explored, and these systems are compared with each other. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications)
Show Figures

Figure 1

24 pages, 1607 KiB  
Review
Graphene Family Nanomaterials (GFN)-TiO2 for the Photocatalytic Removal of Water and Air Pollutants: Synthesis, Characterization, and Applications
by Chih-Hsien Lin and Wei-Hsiang Chen
Nanomaterials 2021, 11(12), 3195; https://doi.org/10.3390/nano11123195 - 25 Nov 2021
Cited by 7 | Viewed by 3670
Abstract
Given the industrial revolutions and resource scarcity, the development of green technologies which aims to conserve resources and reduce the negative impacts of technology on the environment has become a critical issue of concern. One example is heterogeneous photocatalytic degradation. Titanium dioxide (TiO [...] Read more.
Given the industrial revolutions and resource scarcity, the development of green technologies which aims to conserve resources and reduce the negative impacts of technology on the environment has become a critical issue of concern. One example is heterogeneous photocatalytic degradation. Titanium dioxide (TiO2) has been intensively researched given its low toxicity and photocatalytic effects under ultraviolet (UV) light irradiation. The advantages conferred by the physical and electrochemical properties of graphene family nanomaterials (GFN) have contributed to the combination of GFN and TiO2 as well as the current variety of GFN-TiO2 catalysts that have exhibited improved characteristics such as greater electron transfer and narrower bandgaps for more potential applications, including those under visible light irradiation. In this review, points of view on the intrinsic properties of TiO2, GFNs (pristine graphene, graphene oxide (GO), reduced GO, and graphene quantum dots (GQDs)), and GFN-TiO2 are presented. This review also explains practical synthesis techniques along with perspective characteristics of these TiO2- and/or graphene-based materials. The enhancement of the photocatalytic activity by using GFN-TiO2 and its improved photocatalytic reactions for the treatment of organic, inorganic, and biological pollutants in water and air phases are reported. It is expected that this review can provide insights into the key to optimizing the photocatalytic activity of GFN-TiO2 and possible directions for future development in these fields. Full article
(This article belongs to the Special Issue Synthesis, Modification and Application of Graphene)
Show Figures

Figure 1

16 pages, 1380 KiB  
Review
Direct and Indirect Genotoxicity of Graphene Family Nanomaterials on DNA—A Review
by Kangying Wu, Qixing Zhou and Shaohu Ouyang
Nanomaterials 2021, 11(11), 2889; https://doi.org/10.3390/nano11112889 - 28 Oct 2021
Cited by 39 | Viewed by 4379
Abstract
Graphene family nanomaterials (GFNs), including graphene, graphene oxide (GO), reduced graphene oxide (rGO), and graphene quantum dots (GQDs), have manifold potential applications, leading to the possibility of their release into environments and the exposure to humans and other organisms. However, the genotoxicity of [...] Read more.
Graphene family nanomaterials (GFNs), including graphene, graphene oxide (GO), reduced graphene oxide (rGO), and graphene quantum dots (GQDs), have manifold potential applications, leading to the possibility of their release into environments and the exposure to humans and other organisms. However, the genotoxicity of GFNs on DNA remains largely unknown. In this review, we highlight the interactions between DNA and GFNs and summarize the mechanisms of genotoxicity induced by GFNs. Generally, the genotoxicity can be sub-classified into direct genotoxicity and indirect genotoxicity. The direct genotoxicity (e.g., direct physical nucleus and DNA damage) and indirect genotoxicity mechanisms (e.g., physical destruction, oxidative stress, epigenetic toxicity, and DNA replication) of GFNs were summarized in the manuscript, respectively. Moreover, the influences factors, such as physicochemical properties, exposure dose, and time, on the genotoxicity of GFNs are also briefly discussed. Given the important role of genotoxicity in GFNs exposure risk assessment, future research should be conducted on the following: (1) developing reliable testing methods; (2) elucidating the response mechanisms associated with genotoxicity in depth; and (3) enriching the evaluation database regarding the type of GFNs, applied dosages, and exposure times. Full article
Show Figures

Graphical abstract

40 pages, 6625 KiB  
Review
Graphene Family Nanomaterial Reinforced Magnesium-Based Matrix Composites for Biomedical Application: A Comprehensive Review
by Somayeh Abazari, Ali Shamsipur, Hamid Reza Bakhsheshi-Rad, Seeram Ramakrishna and Filippo Berto
Metals 2020, 10(8), 1002; https://doi.org/10.3390/met10081002 - 25 Jul 2020
Cited by 55 | Viewed by 6605
Abstract
Together with the enhancement of the load-bearing implant process for bone substitution and reproduction, an increasing requirement was observed concerning biodegradable magnesium and its alloys with lighter density and outstanding characteristics. Regardless of the current great potential of Mg utilization currently, the broader [...] Read more.
Together with the enhancement of the load-bearing implant process for bone substitution and reproduction, an increasing requirement was observed concerning biodegradable magnesium and its alloys with lighter density and outstanding characteristics. Regardless of the current great potential of Mg utilization currently, the broader use of Mg alloys continues to be constrained by several natural causes, such as low resistance of corrosion, inadequate mechanical integrity during the healing process, and poor antibacterial performance. In this perspective, Mg-based composite encapsulated within graphene family nanomaterials (GFNs) such as graphene (Gr), graphene oxide (GO), graphene nanoplatelets (GNPs), and reduced graphene oxide (rGO) as reinforcement agents present great antibacterial activity, as well as cellular response and depicted numerous benefits for biomedical use. Magnesium matrix nanocomposites reinforced with GFNs possess enhanced mechanical properties and high corrosion resistance (low concentration graphene). It is worth noting that numerous elements including the production technique of the Mg-based composite containing GFNs and the size, distribution, and amounts of GFNs in the Mg-based matrix have a crucial role in their properties and applications. Then, the antibacterial mechanisms of GFN-based composite are briefly described. Subsequently, the antibacterial and strengthening mechanisms of GFN-embedded Mg-based composites are briefly described. This review article is designed to wrap up and explore the most pertinent research performed in the direction of Mg-based composites encapsulated within GFNs. Feasible upcoming investigation directions in the field of GFN-embedded Mg-based composites are discussed in detail. Full article
Show Figures

Graphical abstract

Back to TopTop