Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = granular photocatalytic material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5067 KiB  
Article
In-Situ Hydrothermal Fabrication of ZnO-Loaded GAC Nanocomposite for Efficient Rhodamine B Dye Removal via Synergistic Photocatalytic and Adsorptive Performance
by Kehinde Shola Obayomi, Sie Yon Lau, Zongli Xie, Stephen R. Gray and Jianhua Zhang
Nanomaterials 2024, 14(14), 1234; https://doi.org/10.3390/nano14141234 - 22 Jul 2024
Cited by 4 | Viewed by 2101
Abstract
In this work, zinc oxide (ZnO)/granular activated carbon (GAC) composites at different ZnO concentrations (0.25M-ZnO@GAC, 0.5M-ZnO@GAC, and 0.75M-ZnO@GAC) were prepared by an in-situ hydrothermal method and demonstrated synergistic photocatalytic degradation and adsorption of rhodamine B (RhB). The thermal stability, morphological structure, elemental composition, [...] Read more.
In this work, zinc oxide (ZnO)/granular activated carbon (GAC) composites at different ZnO concentrations (0.25M-ZnO@GAC, 0.5M-ZnO@GAC, and 0.75M-ZnO@GAC) were prepared by an in-situ hydrothermal method and demonstrated synergistic photocatalytic degradation and adsorption of rhodamine B (RhB). The thermal stability, morphological structure, elemental composition, crystallographic structure, and textural properties of developed catalysts were characterized by thermal gravimetric analysis (TGA/DTG), scanning electron microscopy equipped with energy dispersive-x-ray (SEM-EDS), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis. The successful loading of ZnO onto GAC was confirmed by SEM-EDS and XRD analysis. The BET surface areas of GAC, 0.25M-ZnO@GAC, 0.5M-ZnO@GAC, and 0.75M-ZnO@GAC were 474 m2/g, 450 m2/g, 453 m2/g, and 421 m2/g, respectively. The decrease in GAC could be attributed to the successful loading of ZnO on the GAC surface. Notably, 0.5M-ZnO@GAC exhibited the best photocatalytic degradation efficiency of 82% and 97% under UV-A and UV-C light over 120 min, attributed to improved crystallinity and visible light absorption. The photocatalytic degradation parameters revealed that lowering the RhB concentration and raising the catalyst dosage and pH beyond the point of zero charge (PZC) would favor the RhB degradation. Photocatalytic reusability was demonstrated over five cycles. Scavenger tests revealed that the hydroxyl radicals (OH), superoxide radicals (O2−•), and photoinduced hole (h+) radicals play a major role during the RhB degradation process. Based on the TOC results, the RhB mineralization efficiency of 79.1% was achieved by 0.5M-ZnO@GAC. Additionally, GAC exhibited a strong adsorptive performance towards RhB, with adsorption capacity and the RhB removal of 487.1 mg/g and 99.5% achieved within 90 min of equilibrium time. The adsorption characteristics were best described by pseudo-second-order kinetics, suggesting chemical adsorption. This research offers a new strategy for the development of effective photocatalyst materials with potential for wider wastewater treatment applications. Full article
Show Figures

Graphical abstract

19 pages, 6068 KiB  
Article
Photocatalytic Porous Silica-Based Granular Media for Organic Pollutant Degradation in Industrial Waste-Streams
by Hannah M. McIntyre and Megan L. Hart
Catalysts 2021, 11(2), 258; https://doi.org/10.3390/catal11020258 - 15 Feb 2021
Cited by 10 | Viewed by 3107
Abstract
Photocatalytic treatment of organic contaminants in industrial wastewaters has gained interest due to their potential for effective degradation. However, photocatalytic slurry reactors are hindered by solution turbidity, dissolved salt content, and absorbance of light. Research presented here introduces the development and application of [...] Read more.
Photocatalytic treatment of organic contaminants in industrial wastewaters has gained interest due to their potential for effective degradation. However, photocatalytic slurry reactors are hindered by solution turbidity, dissolved salt content, and absorbance of light. Research presented here introduces the development and application of a novel, photocatalytic, porous silica-based granular media (SGM). SGM retains the cross-linked structure developed during synthesis through a combination of foaming agent addition and activation temperature. The resultant media has a high porosity of 88%, with a specific surface area of ~150 m2/gram. Photocatalytic capabilities are further enhanced as the resultant structure fixes the photocatalyst within the translucent matrix. SGM is capable of photocatalysis combined with diffusion of nucleophiles, electrophiles, and salts from pore space. The photocatalytic efficiencies of SGM at various silica contents were quantified in batch reactors using methylene blue destruction over time and cycles. Methylene blue concentrations of 10 mg/L were effectively degraded (>90%) within 40 min. This effectiveness was retained over multiple cycles and various methylene blue concentrations. SGM is a passive and cost-effective granular treatment system technology which can translate to other organic contaminants and industrial processes. Full article
(This article belongs to the Special Issue Catalytic Remediation for Industrial Wastes)
Show Figures

Graphical abstract

11 pages, 3099 KiB  
Article
The Improvement of Coralline-Like ZnGa2O4 by Cocatalysts for the Photocatalytic Degradation of Rhodamine B
by Jia Yang, Xiaorui Sun, Wanxi Yang, Meixia Zhu and Jianwei Shi
Catalysts 2020, 10(2), 221; https://doi.org/10.3390/catal10020221 - 11 Feb 2020
Cited by 11 | Viewed by 2980
Abstract
To date, various methods have been used to synthesize ZnGa2O4 material to promote photodegradation performance. However, cocatalysts, which usually play a crucial role in the photocatalyst system, have not been studied extensively in photocatalytic degradation reactions. In this paper, ZnGa [...] Read more.
To date, various methods have been used to synthesize ZnGa2O4 material to promote photodegradation performance. However, cocatalysts, which usually play a crucial role in the photocatalyst system, have not been studied extensively in photocatalytic degradation reactions. In this paper, ZnGa2O4 semiconducting material was synthesized by a traditional high-temperature solid-state reaction. The as-prepared powder was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet–visible diffused reflectance spectroscopy. The results indicate that the as-prepared sample is a highly crystallized granular sample with a bandgap of 4.44 eV and a uniform particle size distribution. Density functional theory (DFT) was utilized to calculate the electronic structure of ZnGa2O4. The valence bands and conduction bands were chiefly composed of O 2p atomic orbitals and the hybridization orbitals of Ga 4s4p and Zn4s4p, respectively. The photocatalytic performance was tested via the decomposition of rhodamine B (RhB) under the irradiation of ultraviolet light. Cu, Ag, Au, Ni, Pt, and Pd cocatalysts were loaded on the ZnGa2O4 photocatalyst by a photodeposition method. The relatively optimal cocatalyst of ZnGa2O4 in the photocatalytic degradation reaction is Au. Thereafter, the effect of loading different usage amounts of the Au cocatalyst for the photodegradation of the ZnGa2O4 photocatalyst was studied in detail. The experimental results displayed that the optimum photodegradation activity was confirmed with the 3 wt% Au/ZnGa2O4 sample, which was 14.1 times more than the unloaded photocatalyst. The maximum photocatalytic degradation ratio of RhB was 96.7%, with 180 min under ultraviolet light. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

14 pages, 3904 KiB  
Article
Flexible TiO2/PVDF/g-C3N4 Nanocomposite with Excellent Light Photocatalytic Performance
by Tong-Tong Zhou, Feng-He Zhao, Yu-Qian Cui, Li-Xiang Chen, Jia-Shu Yan, Xiao-Xiong Wang and Yun-Ze Long
Polymers 2020, 12(1), 55; https://doi.org/10.3390/polym12010055 - 31 Dec 2019
Cited by 27 | Viewed by 5050
Abstract
As the world faces water shortage and pollution crises, the development of novel visible light photocatalysts to purify water resources is urgently needed. Over the past decades, most of the reported photocatalysts have been in powder or granular forms, creating separation and recycling [...] Read more.
As the world faces water shortage and pollution crises, the development of novel visible light photocatalysts to purify water resources is urgently needed. Over the past decades, most of the reported photocatalysts have been in powder or granular forms, creating separation and recycling difficulties. To overcome these challenges, a flexible and recyclable heterostructured TiO2/polyvinylidene fluoride/graphitic carbon nitride (TiO2/PVDF/g-C3N4) composite was developed by combining electrospinning, sintering and hydrothermal methods. In the composite, PVDF was used as a support template for removing and separating the photocatalyst from solution. Compared with pure TiO2, the TiO2/PVDF/g-C3N4 composite exhibited the extended light capture range of TiO2 into the visible light region. The photogenerated carriers were efficiently transferred and separated at the contact interface between TiO2 and g-C3N4 under visible light irradiation, which consequently increased the photocatalytic activity of the photocatalyst. In addition, the flexible composites exhibited excellent self-cleaning properties, and the dye on the photocatalysts was completely degraded by the as-prepared materials. Based on the intrinsic low cost, recyclability, absorption of visible light, facile synthesis, self-cleaning properties and good photocatalytic performances of the composite, the photocatalyst is expected to be used for water treatment. Full article
Show Figures

Figure 1

Back to TopTop