Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = glycinyl lactam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4526 KiB  
Perspective
Case Studies in Molecular Network-Guided Marine Biodiscovery
by Shamsunnahar Khushi, Angela A. Salim and Robert J. Capon
Mar. Drugs 2023, 21(7), 413; https://doi.org/10.3390/md21070413 - 20 Jul 2023
Cited by 5 | Viewed by 2741
Abstract
In reviewing a selection of recent case studies from our laboratory, we revealed some lessons learned and benefits accrued from the application of mass spectrometry (MS/MS) molecular networking in the field of marine sponge natural products. Molecular networking proved pivotal to our discovery [...] Read more.
In reviewing a selection of recent case studies from our laboratory, we revealed some lessons learned and benefits accrued from the application of mass spectrometry (MS/MS) molecular networking in the field of marine sponge natural products. Molecular networking proved pivotal to our discovery of many new natural products and even new classes of natural product, some of which were opaque to alternate dereplication and prioritization strategies. Case studies included the discovery of: (i) trachycladindoles, an exceptionally rare class of bioactive indole alkaloid previously only known from a single southern Australia sample of Trachycladus laevispirulifer; (ii) dysidealactams, an unprecedented class of sesquiterpene glycinyl-lactam and glycinyl-imide from a Dysidea sp., a sponge genera often discounted as having been exhaustively studied; (iii) cacolides, an unprecedented family of sesterterpene α-methyl-γ-hydroxybutenolides from a Cacospongia sp., all too easily mischaracterized and deprioritized during dereplication as a well-known class of sponge sesterterpene tetronic acids; and (iv) thorectandrins, a new class of indole alkaloid which revealed unexpected insights into the chemical and biological properties of the aplysinopsins, one of the earliest and more extensively reported class of sponge natural products. Full article
(This article belongs to the Special Issue Marine Metabolomics 2023)
Show Figures

Graphical abstract

20 pages, 5398 KiB  
Article
Furanoterpene Diversity and Variability in the Marine Sponge Spongia officinalis, from Untargeted LC–MS/MS Metabolomic Profiling to Furanolactam Derivatives
by Cléa Bauvais, Natacha Bonneau, Alain Blond, Thierry Pérez, Marie-Lise Bourguet-Kondracki and Séverine Zirah
Metabolites 2017, 7(2), 27; https://doi.org/10.3390/metabo7020027 - 13 Jun 2017
Cited by 14 | Viewed by 6528
Abstract
The Mediterranean marine sponge Spongia officinalis has been reported as a rich source of secondary metabolites and also as a bioindicator of water quality given its capacity to concentrate trace metals. In this study, we evaluated the chemical diversity within 30 S. officinalis [...] Read more.
The Mediterranean marine sponge Spongia officinalis has been reported as a rich source of secondary metabolites and also as a bioindicator of water quality given its capacity to concentrate trace metals. In this study, we evaluated the chemical diversity within 30 S. officinalis samples collected over three years at two sites differentially impacted by anthropogenic pollutants located near Marseille (South of France). Untargeted liquid chromatography—mass spectrometry (LC–MS) metabolomic profiling (C18 LC, ESI-Q-TOF MS) combined with XCMS Online data processing and multivariate statistical analysis revealed 297 peaks assigned to at least 86 compounds. The spatio-temporal metabolite variability was mainly attributed to variations in relative content of furanoterpene derivatives. This family was further characterized through LC–MS/MS analyses in positive and negative ion modes combined with molecular networking, together with a comprehensive NMR study of isolated representatives such as demethylfurospongin-4 and furospongin-1. The MS/MS and NMR spectroscopic data led to the identification of a new furanosesterterpene, furofficin (2), as well as two derivatives with a glycinyl lactam moiety, spongialactam A (12a) and B (12b). This study illustrates the potential of untargeted LC–MS metabolomics and molecular networking to discover new natural compounds even in an extensively studied organism such as S. officinalis. It also highlights the effect of anthropogenic pollution on the chemical profiles within the sponge. Full article
(This article belongs to the Special Issue Marine Metabolomics)
Show Figures

Figure 1

Back to TopTop