Case Studies in Molecular Network-Guided Marine Biodiscovery
Abstract
:1. Introduction
2. Acquiring a GNPS Molecular Network of a Marine Library
2.1. Preparing a Marine Extract Library
2.2. Preparing a GNPS Molecular Network
3. Detecting New Analogues of Known Chemistry
3.1. Franklinolides
3.2. Bistellettazines
3.3. Dragmacidins
3.4. Lamellarins
3.5. Ircinialactams
3.6. Discorhabdins
3.7. Trunculins
4. Case Studies in the Discovery of Rare and New Natural Product Classes
4.1. Trachycladindoles
4.2. Dysidealactams
4.3. Cacolides
4.4. Thorectandrins
5. Conclusions
- Disclosing the rarity of a structure class (i.e., dragmacidins);
- Finding new sources/examples of rare chemistry (i.e., trachycladindoles);
- Prioritizing otherwise stranded extracts to help find new analogues of known structure classes (i.e., franklinolides, bistellettazines, lamellarins, ircinialactams, discorhabdins, trunculins);
- Finding entirely new structure classes (i.e., dysidealactams, cacolides); and
- Discovering new natural products that shed light on ecological properties and pharmacological mechanisms of action (i.e., thorectandrins).
- Access to UPLC-MS/MS technology: While UPLC-MS/MS technology is increasingly accessible, the levels of access (and cost) can vary greatly between laboratories. To best apply GNPS as a routine biodiscovery dereplication tool requires hands on and reliable access to appropriate instrumentation.
- Access to HRESIMS: In our hands, the accuracy of the m/z values acquired for each GNPS node was insufficient to assign definitive molecular formula (MF). As MF assignments are critical to online database searches (i.e., SciFinder) that are the key to rapidly discriminating known from new natural products, this necessitates separate measurements on targeted molecular families and individual nodes. In due course this technological limitation may be solved by better instrumentation.
- Clusters versus singletons: In any GNPS molecular network, what stands out most are the molecular families (i.e., the clusters of nodes linked by solid lines of varying thickness). That said, all GNPS molecular networks feature a large number of singletons—nodes that are not clustered. While it may be tempting to disregard singletons during any GNPS analysis, this runs the risk of overlooking interesting (even remarkable) natural products—that simply are so unique in their MS/MS fragment that they have no cluster partners. Singletons can (on occasion) count!
- Molecular families: Molecular families are clusters of natural products (nodes) that share a common/related MS/MS fragmentation. As such, members of any given structure class can be incorporated into one or more molecular families, depending on the nature of structure diversity and its impact on MS/MS fragmentation. Do not assume all members of the same structure class will co-cluster.
- Molecular adducts: Some natural products classes can exist as multiple adducts (i.e., M+H, M+Na, M+K, M+NH4), which can cluster separately into different molecular families. This can create the illusion of more structure diversity than is actually the case.
- Ionization: Some natural products do not ionize well under ESI(+) conditions, and as such, would not feature prominently (or at all) in a +ve mode GNPS molecular network. Depending on the structure class you are looking for, you might consider reacquiring a –ve mode GNPS molecular network.
- Structure Proof: Finally, and arguably of greatest importance, there are occurrences in the literature where researchers seemed to defer to GNPS as a definitive proof of structure assignment. This is unwise, especially for chiral natural products, as MS/MS fragmentation is silent on matters of stereochemistry. GNPS can be a valuable guide for dereplication and prioritization, but unless you have access to an authentic natural product standard, it is not a substitute for isolation and more traditional structure elucidation based on spectroscopic analysis.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, L.-L.; Ding, Y.-F.; Zhang, W.; Lin, H.-W. Chemical and biological diversity of new natural products from marine sponges: A review (2009–2018). Mar. Life Sci. Technol. 2022, 4, 356–372. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.-F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F.; et al. Reproducible Molecular Networking of Untargeted Mass Spectrometry Data Using GNPS. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Crüsemann, M.; O’Neill, E.C.; Larson, C.B.; Melnik, A.V.; Floros, D.J.; da Silva, R.R.; Jensen, P.R.; Dorrestein, P.C.; Moore, B.S. Prioritizing natural product diversity in a collection of 146 bacterial strains based on growth and extraction protocols. J. Nat. Prod. 2017, 80, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Scarpato, S.; Teta, R.; Della Sala, G.; Pawlik, J.R.; Costantino, V.; Mangoni, A. New tricks with an old sponge: Feature-based molecular networking led to fast identification of new stylissamide L from Stylissa caribica. Mar. Drugs 2020, 18, 443. [Google Scholar] [CrossRef]
- Bracegirdle, J.; Stevenson, L.J.; Page, M.J.; Owen, J.G.; Keyzers, R.A. Targeted Isolation of rubrolides from the New Zealand marine tunicate Synoicum kuranui. Mar. Drugs 2020, 18, 337. [Google Scholar] [CrossRef]
- Elbanna, A.H.; Khalil, Z.G.; Bernhardt, P.V.; Capon, R.J. Scopularides revisited: Molecular networking guided exploration of lipodepsipeptides in Australian marine fish gastrointestinal tract-derived fungi. Mar. Drugs 2019, 17, 475. [Google Scholar] [CrossRef] [Green Version]
- Elbanna, A.H.; Agampodi Dewa, A.; Khalil, Z.G.; Capon, R.J. Precursor-directed biosynthesis mediated amplification of minor aza phenylpropanoid piperazines in an Australian marine fish-gut-derived fungus, Chrysosporium sp. CMB-F214. Mar. Drugs 2021, 19, 478. [Google Scholar] [CrossRef]
- Agampodi Dewa, A.; Khalil, Z.G.; Elbanna, A.H.; Capon, R.J. Chrysosporazines revisited: Regioisomeric phenylpropanoid piperazine P-glycoprotein inhibitors from Australian marine fish-derived fungi. Molecules 2022, 27, 3172. [Google Scholar] [CrossRef]
- Dewa, A.A.; Elbanna, A.H.; Khalil, Z.G.; Capon, R.J. Neochrysosporazines: Precursor-directed biosynthesis defines a marine-derived fungal natural product P-glycoprotein inhibitory pharmacophore. J. Med. Chem. 2022, 65, 2610–2622. [Google Scholar] [CrossRef]
- Wu, T.; Salim, A.A.; Bernhardt, P.V.; Capon, R.J. Amaurones A–K: Polyketides from the fish gut-derived fungus Amauroascus sp. CMB-F713. J. Nat. Prod. 2021, 84, 474–482. [Google Scholar] [CrossRef]
- Khushi, S.; Nahar, L.; Salim, A.A.; Capon, R.J. Trachycladindoles H–M: Molecular networking guided exploration of a library of Southern Australian marine sponges. Aust. J. Chem. 2020, 73, 338–343. [Google Scholar] [CrossRef]
- Khushi, S.; Salim, A.A.; Elbanna, A.H.; Nahar, L.; Bernhardt, P.V.; Capon, R.J. Dysidealactams and dysidealactones: Sesquiterpene glycinyl-lactams, imides, and lactones from a Dysidea sp. marine sponge collected in southern Australia. J. Nat. Prod. 2020, 83, 1577–1584. [Google Scholar] [CrossRef]
- Khushi, S.; Nahar, L.; Salim, A.A.; Capon, R.J. Cacolides: Sesterterpene butenolides from a Southern Australian marine sponge, Cacospongia sp. Mar. Drugs 2018, 16, 456. [Google Scholar] [CrossRef] [Green Version]
- Khushi, S.; Salim, A.A.; Elbanna, A.H.; Nahar, L.; Capon, R.J. New from old: Thorectandrin alkaloids in a Southern Australian marine sponge, Thorectandra choanoides (CMB-01889). Mar. Drugs 2021, 19, 97. [Google Scholar] [CrossRef]
- Zhang, H.; Conte, M.M.; Capon, R.J. Franklinolides A–C from an Australian marine sponge complex: Phosphodiesters strongly enhance polyketide cytotoxicity. Angew. Chem. 2010, 122, 10100–10102. [Google Scholar] [CrossRef]
- El-Naggar, M.; Piggott, A.M.; Capon, R.J. Bistellettazines A−C and bistellettazole A: New terpenyl− pyrrolizidine and terpenyl− imidazole alkaloids from a Southern Australian marine sponge, Stelletta sp. Org. Lett. 2008, 10, 4247–4250. [Google Scholar] [CrossRef]
- Capon, R.J.; Rooney, F.; Murray, L.M.; Collins, E.; Sim, A.T.R.; Rostas, J.A.P.; Butler, M.S.; Carroll, A.R. Dragmacidins: New protein phosphatase inhibitors from a southern australian deep-water marine sponge, Spongosorites sp. J. Nat. Prod. 1998, 61, 660–662. [Google Scholar] [CrossRef]
- Huang, X.-C.; Xiao, X.; Zhang, Y.-K.; Talele, T.T.; Salim, A.A.; Chen, Z.-S.; Capon, R.J. Lamellarin O, a pyrrole alkaloid from an Australian marine sponge, Ianthella sp., reverses BCRP mediated drug resistance in cancer cells. Mar. Drugs 2014, 12, 3818–3837. [Google Scholar] [CrossRef] [Green Version]
- Balansa, W.; Islam, R.; Fontaine, F.; Piggott, A.M.; Zhang, H.; Webb, T.I.; Gilbert, D.F.; Lynch, J.W.; Capon, R.J. Ircinialactams: Subunit-selective glycine receptor modulators from Australian sponges of the family Irciniidae. Bioorg. Med. Chem. 2010, 18, 2912–2919. [Google Scholar] [CrossRef]
- Ford, J.; Capon, R.J. Discorhabdin R: A new antibacterial pyrroloiminoquinone from two latrunculiid marine sponges, Latrunculia sp. and Negombata sp. J. Nat. Prod. 2000, 63, 1527–1528. [Google Scholar] [CrossRef]
- Capon, R.J.; MacLeod, J.K.; Willis, A.C. Trunculins A and B, norsesterterpene cyclic peroxides from a marine sponge, Latrunculia brevis. J. Org. Chem. 1987, 52, 339–342. [Google Scholar] [CrossRef]
- Vuong, D.; Capon, R.J. Phorbasin A: A novel diterpene from a southern Australian marine sponge, Phorbas species. J. Nat. Prod. 2000, 63, 1684–1685. [Google Scholar] [CrossRef]
- Salim, A.A.; Rae, J.; Fontaine, F.; Conte, M.M.; Khalil, Z.; Martin, S.; Parton, R.G.; Capon, R.J. Heterofibrins: Inhibitors of lipid droplet formation from a deep-water southern Australian marine sponge, Spongia (Heterofibria) sp. Org. Biomol. Chem. 2010, 8, 3188–3194. [Google Scholar] [CrossRef]
- Ovenden, S.P.B.; Capon, R.J.; Lacey, E.; Gill, J.H.; Friedel, T.; Wadsworth, D. Amphilactams A−D: Novel nematocides from Southern Australian Marine sponges of the Genus Amphimedon. J. Org. Chem. 1999, 64, 1140–1144. [Google Scholar] [CrossRef]
- Capon, R.J.; Peng, C.; Dooms, C. Trachycladindoles A–G: Cytotoxic heterocycles from an Australian marine sponge, Trachycladus laevispirulifer. Org. Biomol. Chem. 2008, 6, 2765–2771. [Google Scholar] [CrossRef]
- Jamison, M.T.; Molinski, T.F. Jamaicensamide A, a peptide containing β-amino-α-keto and thiazole-homologated η-amino acid residues from the sponge Plakina jamaicensis. J. Nat. Prod. 2016, 79, 2243–2249. [Google Scholar] [CrossRef]
- Della-Felice, F.; de Andrade Bartolomeu, A.; Pilli, R.A. The phosphate ester group in secondary metabolites. Nat. Prod. Rep. 2022, 39, 1066–1107. [Google Scholar] [CrossRef]
- Urban, S.; Butler, M.S.; Capon, R.J. Lamellarins O and P: New aromatic metabolites from the Australian marine sponge Dendrilla cactos. Aust. J. Chem. 1994, 47, 1919–1924. [Google Scholar] [CrossRef]
- Urban, S.; Hobbs, L.; Hooper, J.N.A.; Capon, R.J. Lamellarins Q and R: New aromatic metabolites from an Australian marine sponge, Dendrilla cactos. Aust. J. Chem. 1995, 48, 1491–1494. [Google Scholar] [CrossRef]
- Zhang, H.; Conte, M.M.; Huang, X.-C.; Khalil, Z.; Capon, R.J. A search for BACE inhibitors reveals new biosynthetically related pyrrolidones, furanones and pyrroles from a southern Australian marine sponge, Ianthella sp. Org. Biomol. Chem. 2012, 10, 2656–2663. [Google Scholar] [CrossRef]
- Urban, S.; Capon, R.J. Lamellarin-S: A new aromatic metabolite from an Australian tunicate, Didemnum sp. Aust. J. Chem. 1996, 49, 711–713. [Google Scholar] [CrossRef]
- Plisson, F.; Huang, X.-C.; Zhang, H.; Khalil, Z.; Capon, R.J. Lamellarins as Inhibitors of P-Glycoprotein-Mediated Multidrug Resistance in a Human Colon Cancer Cell Line. Chem. Asian J. 2012, 7, 1616–1623. [Google Scholar] [CrossRef]
- Plisson, F.; Conte, M.; Khalil, Z.; Huang, X.-C.; Piggott, A.M.; Capon, R.J. Kinase lnhibitor scaffolds against neurodegenerative diseases from a Southern Australian ascidian, Didemnum sp. Chem. Med. Chem. 2012, 7, 983–990. [Google Scholar] [CrossRef]
- Prasad, P.; Zhang, A.; Salim, A.A.; Capon, R.J. Pursuing sesterterpene lactams in Australian Irciniidae sponges. Fitoterapia 2018, 126, 83–89. [Google Scholar] [CrossRef]
- El-Naggar, M.; Capon, R.J. Discorhabdins revisited: Cytotoxic alkaloids from Southern Australian marine sponges of the genera Higginsia and Spongosorites. J. Nat. Prod. 2009, 72, 1368, Erratum in J. Nat. Prod. 2009, 72, 460–464. [Google Scholar] [CrossRef] [Green Version]
- El-Naggar, M.; Capon, R.J. Discorhabdins revisited: Cytotoxic alkaloids from Southern Australian marine sponges of the genera Higginsia and Spongosorites. J. Nat. Prod. 2009, 72, 460–464. [Google Scholar] [CrossRef]
- Butler, M.S.; Capon, R.J. Trunculin-F and contrunculin-A and -B: Novel oxygenated norterpenes from a southern Australian marine sponge, Latrunculia conulosa. Aust. J. Chem. 1993, 46, 1363–1374. [Google Scholar] [CrossRef]
- Ovenden, S.P.B.; Capon, R.J. Trunculins G-I: New norsesterterpene cyclic peroxides from a southern Australian marine sponge, Latrunculia sp. Aust. J. Chem. 1998, 51, 573–579. [Google Scholar] [CrossRef]
- Capon, R.J.; Macleod, J.K. Structural and stereochemical studies on marine norterpene cyclic peroxides. Tetrahedron 1985, 41, 3391–3404. [Google Scholar] [CrossRef]
- Medina Padilla, M.; Orozco Munoz, L.; Capon, R. Therapeutic Use of Indole-Dihydro-Imidazole Derivatives. WO2013167635, 13 November 2013. [Google Scholar]
- Capon, R.J. Extracting value: Mechanistic insights into the formation of natural product artifacts—Case studies in marine natural products. Nat. Prod. Rep. 2020, 37, 55–79. [Google Scholar] [CrossRef]
- Sharma, G.M.; Vig, B. Studies on the antimicrobial substances of sponges. VI. Structures of two antibacterial substances isolated from the marine sponge Dysidea herbacea. Tetrahedron Lett. 1972, 13, 1715–1718. [Google Scholar] [CrossRef]
- Norton, R.S.; Wells, R.J. Use of 13C spin-lattice relaxation measurements to determine the structure of a tetrabromo diphenyl ether from the sponge Dysidea herbacea. Tetrahedron Lett. 1980, 21, 3801–3804. [Google Scholar] [CrossRef]
- Hofheinz, W.; Oberhänsli, W.E. Dysidin, a novel chlorine containing natural product from the sponge Dysidea herbacea. Helv. Chim. Acta 1977, 60, 660–669. [Google Scholar] [CrossRef]
- Kazlauskas, R.; Lidgard, R.O.; Wells, R.J.; Vetter, W. A novel hexachloro-metabolite from the sponge Dysidea herbacea. Tetrahedron Lett. 1977, 18, 3183–3186. [Google Scholar] [CrossRef]
- Kazlauskas, R.; Murphy, P.T.; Wells, R.J. A new sesquiterpene from the sponge Dysidea herbacea. Tetrahedron Lett. 1978, 19, 4949–4950. [Google Scholar] [CrossRef]
- Kazlauskas, R.; Murphy, P.T.; Wells, R.J.; Daly, J.J.; Schönholzer, P. Two sesquiterpene furans with new carbocyclic ring systems and related thiol acetates from a species of the sponge genus Dysidea. Tetrahedron Lett. 1978, 19, 4951–4954. [Google Scholar] [CrossRef]
- Dunlop, R.W.; Kazlauskas, R.; March, G.; Murphy, P.T.; Wells, R.J. New furano-sesquiterpenes from the sponge Dysidea herbacea. Aust. J. Chem. 1982, 35, 95–103. [Google Scholar] [CrossRef]
- Butler, M.S.; Capon, R.J. Beyond polygodial: New drimane sesquiterpenes from a Southern Australian marine sponge, Dysidea sp. Aust. J. Chem. 1993, 46, 1255–1267. [Google Scholar] [CrossRef]
- Garson, M.J.; Dexter, A.F.; Lambert, L.K.; Liokas, V. Isolation of the bioactive terpene 7-deacetoxy-olepupuane from the temperate marine sponge Dysidea sp. J. Nat. Prod. 1992, 55, 364–367. [Google Scholar] [CrossRef]
- Flowers, A.E.; Garson, M.J.; Byriel, K.A.; Kennard, C.H.L. Two new isonakafurans from the Great Barrier Reef sponge Dysidea sp. nov. Aust. J. Chem. 1998, 51, 195–200. [Google Scholar] [CrossRef]
- Cameron, G.M.; Stapleton, B.L.; Simonsen, S.M.; Brecknell, D.J.; Garson, M.J. New sesquiterpene and brominated metabolites from the tropical marine sponge Dysidea sp. Tetrahedron 2000, 56, 5247–5252. [Google Scholar] [CrossRef]
- Searle, P.A.; Jamal, N.M.; Lee, G.M.; Moliski, T.F. Configurational analysis of new furanosesquiterpenes from Dysidea herbacea. Assignment of absolute stereochemistry. Tetrahedron 1994, 50, 3879–3888. [Google Scholar] [CrossRef]
- Capon, R.J.; MacLeod, J.K. Thiofurodysinin, a sulfur-containing furanosesquiterpene from the marine sponge Dysidea avara. J. Nat. Prod. 1987, 50, 1136–1137. [Google Scholar] [CrossRef]
- Lee, G.M.; Molinski, T.F. Herbaceamide, a chlorinated N-acyl amino ester from the marine sponge, Dysidea herbacea. Tetrahedron Lett. 1992, 33, 7671–7674. [Google Scholar] [CrossRef]
- Murray, L.; Sim, A.; Rostas, J.; Capon, R. Isopalinurin: A mild protein phosphatase inhibitor from a Southern Australian marine sponge, Dysidea sp. Aust. J. Chem. 1993, 46, 1291–1294. [Google Scholar] [CrossRef]
- Bandaranayake, W.M.; Bemis, J.E.; Bourne, D.J. Ultraviolet absorbing pigments from the marine sponge Dysidea herbacea: Isolation and structure of a new mycosporine. Comp. Biochem. Phys. C 1996, 115, 281–286. [Google Scholar] [CrossRef]
- Dumdei, E.J.; Simpson, J.S.; Garson, M.J.; Byriel, K.A.; Kennard, C.H.L. New chlorinated metabolites from the tropical marine sponge Dysidea herbacea. Aust. J. Chem. 1997, 50, 139–144. [Google Scholar] [CrossRef]
- MacMillan, J.B.; Molinski, T.F. Herbacic acid, a simple prototype of 5, 5, 5-trichloroleucine metabolites from the sponge Dysidea herbacea. J. Nat. Prod. 2000, 63, 155–157. [Google Scholar] [CrossRef]
- Stapleton, B.L.; Cameron, G.M.; Garson, M.J. New chlorinated peptides from the tropical marine sponge Dysidea sp. Tetrahedron 2001, 57, 4603–4607. [Google Scholar] [CrossRef]
- Norton, R.S.; Croft, K.D.; Wells, R.J. Polybrominated oxydiphenol derivatives from the sponge Dysidea herbacea: Structure determination by analysis of 13C spin-lattice relaxation data for quaternary carbons and 13C-1H coupling constants. Tetrahedron 1981, 37, 2341–2349. [Google Scholar] [CrossRef]
- Bowden, B.F.; Towerzey, L.; Junk, P.C. A new brominated diphenyl ether from the marine sponge Dysidea herbacea. Aust. J. Chem. 2000, 53, 299–301. [Google Scholar] [CrossRef]
- Agrawal, M.S.; Bowden, B.F. Marine sponge Dysidea herbacea revisited: Another brominated diphenyl ether. Mar. Drugs 2005, 3, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Utkina, N.K.; Denisenko, V.A.; Scholokova, O.V.; Virovaya, M.V.; Gerasimenko, A.V.; Popov, D.Y.; Krasokhin, V.B.; Popov, A.M. Spongiadioxins A and B, two new polybrominated dibenzo-p-dioxins from an Australian marine sponge Dysidea dendyi. J. Nat. Prod. 2001, 64, 151–153. [Google Scholar] [CrossRef]
- Capon, R.J.; Faulkner, D.J. Herbasterol, an ichthyotoxic 9, 11-secosterol from the sponge Dysidea herbacea. J. Org. Chem. 1985, 50, 4771–4773. [Google Scholar] [CrossRef]
- De Almeida Leone, P.; Redburn, J.; Hooper, J.N.A.; Quinn, R.J. Polyoxygenated Dysidea sterols that inhibit the binding of [I125] IL-8 to the human recombinant IL-8 receptor type A. J. Nat. Prod. 2000, 63, 694–697. [Google Scholar] [CrossRef]
- Jacob, M.R.; Hossain, C.F.; Mohammed, K.A.; Smillie, T.J.; Clark, A.M.; Walker, L.A.; Nagle, D.G. Reversal of fluconazole resistance in multidrug efflux-resistant fungi by the Dysidea arenaria sponge sterol 9α,11α-epoxycholest-7-ene-3β,5α, 6α,19-tetrol 6-acetate. J. Nat. Prod. 2003, 66, 1618–1622. [Google Scholar] [CrossRef]
- Chen, Y.; Lan, P.; White, L.V.; Yang, W.; Banwell, M.G. Total syntheses of dysidealactams E and F and dysidealactone B, drimane-type sesquiterpenes derived from a Dysidea sp. of marine sponge. Synlett 2023, 34, 1529–1533. [Google Scholar] [CrossRef]
- Cimino, G.; De Stefano, S.; Minale, L.; Fattorusso, E. Ircinin-1 and -2, linear sesterterpenes from the marine sponge Ircinia oros. Tetrahedron 1972, 28, 333–341. [Google Scholar] [CrossRef]
- Faulkner, J.D. Variabilin, an antibiotic from the sponge, Ircinia variabilis. Tetrahedron Lett. 1973, 14, 3821–3822. [Google Scholar] [CrossRef]
- Capon, R.J.; Dargaville, T.R.; Davis, R. The absolute stereochemistry of variabilin and related sesterterpene tetronic acids. Nat. Prod. Lett. 1994, 4, 51–56. [Google Scholar] [CrossRef]
- Capon, R.J.; MacLeod, J.K. A new sesterterpene tetronic acid from an Australian sponge, Ircinia sp. Aust. J. Chem. 1987, 40, 1327–1330. [Google Scholar] [CrossRef]
- Balansa, W.; Islam, R.; Fontaine, F.; Piggott, A.M.; Zhang, H.; Xiao, X.; Webb, T.I.; Gilbert, D.F.; Lynch, J.W.; Capon, R.J. Sesterterpene glycinyl-lactams: A new class of glycine receptor modulator from Australian marine sponges of the genus Psammocinia. Org. Biomol. Chem. 2013, 11, 4695–4701. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.; Hamit, H.; Hooper, J.N.A.; Hobbs, L.; Capon, R.J. A new sesterterpene tetronic acid from an Australian marine sponge, Psammocinia sp. Aust. J. Chem. 1995, 48, 1899–1902. [Google Scholar] [CrossRef]
- Davis, R.; Capon, R.J. Two for one: Structure revision of the marine sesterterpene tetronic acid strobilinin to (8Z,13E,20Z)-strobilinin and (8E,13Z,20Z)-strobilinin. Aust. J. Chem. 1994, 47, 933–936. [Google Scholar] [CrossRef]
- Kazlauskas, R.; Murphy, P.T.; Quinn, R.J.; Wells, R.J. Aplysinopsin, a new tryptophan derivative from a sponge. Tetrahedron Lett. 1977, 18, 61–64. [Google Scholar] [CrossRef]
- Bialonska, D.; Zjawiony, J.K. Aplysinopsins-marine indole alkaloids: Chemistry, bioactivity and ecological significance. Mar. Drugs 2009, 7, 166–183. [Google Scholar] [CrossRef] [Green Version]
- El-Sawy, E.R.; Kirsch, G. An overview of aplysinopsins: Synthesis and biological activities. Mar. Drugs 2023, 21, 268. [Google Scholar] [CrossRef]
- Balansa, W.; Islam, R.; Gilbert, D.F.; Fontaine, F.; Xiao, X.; Zhang, H.; Piggott, A.M.; Lynch, J.W.; Capon, R.J. Australian marine sponge alkaloids as a new class of glycine-gated chloride channel receptor modulator. Bioorg. Med. Chem. 2013, 21, 4420–4425. [Google Scholar] [CrossRef]
Specimens Known to Produce Chemistry | Compound Classes [Ref] |
---|---|
Geodia sp. (CMB-01989) | franklinolides [16] |
Stelletta sp. (CMB-01936) | bistellettazines [17] |
Leiosella/Halichondria spp. (CMB-02782) | dragmacidins [18] |
Ianthella sp. (CMB-01245) | lamellarins [19] |
Ircinia sp. (CMB-01064) | ircinialactams [20] |
Latrunculia sp. (CMB-02720) | discorhabdins [21] |
Spongosorites sp. (CMB-02523) | discorhabdins [21] |
Latrunculia sp. (CMB-01738) | trunculins [22] |
Phorbas sp. (CMB-01978) | phorbasins [23] |
Phorbas sp. (CMB-01934) | phorbasins [23] |
Phorbas sp. (CMB-02020) | phorbasins [23] |
Spongia sp. (CMB-03399) | heterofibrins [24] |
Amphimedon sp. (CMB-01607) | amphilactams [25] |
Amphimedon sp. (CMB-01871) | amphilactams [25] |
Amphimedon sp. (CMB-01876) | amphilactams [25] |
Trachycladus sp. (CMB-03397) | trachycladindoles [26] |
Genus | # | Genus | # | Genus | # |
---|---|---|---|---|---|
Acanthella | 3 | Erylus | 1 | Phorbas | 2 |
Acarnus | 3 | Fasciospongia | 3 | Phoriospongia | 28 |
Amphimedon | 2 | Gelliodes | 1 | Phyllospongia | 2 |
Ancorina | 5 | Geodia | 6 | Polymastia | 4 |
Anomoianthella | 1 | Grantia | 1 | Psammastra | 1 |
Aplysina | 5 | Guitarra | 1 | Psammocinia | 11 |
Arenochalina | 2 | Halichondria | 13 | Psammoclemma | 5 |
Axinella | 13 | Halisarca | 1 | Pseudoceratina | 1 |
Biemna | 2 | Hemiasterella | 1 | Pseudotrachya | 1 |
Cacospongia | 2 | Hemigellius | 1 | Ptilocaulis | 3 |
Callyspongia | 9 | Higginsia | 1 | Raphidotethya | 3 |
Carteriospongia | 1 | Holopsamma | 6 | Raphoxya | 1 |
Caulerpa | 1 | Homaxinella | 2 | Raspailia | 3 |
Chelonaplysilla | 1 | Hyattella | 2 | Reniera | 1 |
Chondropsis | 4 | Hymeniacidon | 2 | Rossella | 1 |
Cinachyra | 2 | Iotrochola | 1 | Sarcotragus | 2 |
Clathria | 20 | Ianthella | 4 | Sigmaxinella | 2 |
Cliona | 1 | Ircinia | 3 | Siphonochalina | 1 |
Coscinoderma | 2 | Isodictya | 2 | Spirastrella | 37 |
Crella | 2 | Latrunculia | 2 | Spongia | 7 |
Cribrochalina | 18 | Leiosella | 7 | Spongionella | 3 |
Cymbastela | 6 | Lendenfeldia | 2 | Spongosorites | 3 |
Dactylia | 2 | Leucetta | 3 | Stelletinopsis | 4 |
Darwinella | 1 | Luffariella | 2 | Stelletta | 2 |
Dendrilla | 1 | Melonanchora | 1 | Strongylacidon | 3 |
Dendrilla | 1 | Microxina | 1 | Strongylodesma | 1 |
Desmacidon | 1 | Mycale | 4 | Stylotricophora | 2 |
Desmapsamma | 2 | Myrmekioderma | 1 | Suberites | 4 |
Dictyodendrilla | 1 | Myxilla | 5 | Taunura | 3 |
Dictyosphaeria | 1 | Neofibularia | 1 | Tedania | 1 |
Druinella | 1 | Niphates | 1 | Tedaniosis | 1 |
Dysidea | 1 | Oceanapia | 9 | Tethya | 6 |
Echinochalina | 4 | Oxymycale | 5 | Tetilla | 4 |
Echinoclathria | 4 | Paracornulum | 1 | Thorecta | 3 |
Echinodictyum | 8 | Parahigginsia | 2 | Thorectandra | 7 |
Ecionemia | 1 | Pericharax | 2 | Trachycladus | 5 |
Ectyomyxilla | 1 | Phakellia | 3 | Xestospongia | 1 |
Ectyoplasia | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khushi, S.; Salim, A.A.; Capon, R.J. Case Studies in Molecular Network-Guided Marine Biodiscovery. Mar. Drugs 2023, 21, 413. https://doi.org/10.3390/md21070413
Khushi S, Salim AA, Capon RJ. Case Studies in Molecular Network-Guided Marine Biodiscovery. Marine Drugs. 2023; 21(7):413. https://doi.org/10.3390/md21070413
Chicago/Turabian StyleKhushi, Shamsunnahar, Angela A. Salim, and Robert J. Capon. 2023. "Case Studies in Molecular Network-Guided Marine Biodiscovery" Marine Drugs 21, no. 7: 413. https://doi.org/10.3390/md21070413
APA StyleKhushi, S., Salim, A. A., & Capon, R. J. (2023). Case Studies in Molecular Network-Guided Marine Biodiscovery. Marine Drugs, 21(7), 413. https://doi.org/10.3390/md21070413