Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = glia limitans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2152 KB  
Article
Spp1 Appears to Be a Key Gene for Sporadic Obstructive Hydrocephalus in the Absence of AQP4
by Miriam Echevarría, Laura Hiraldo-González, José Luis Trillo-Contreras, Francisco D. Rodríguez-Gómez, Francisco Mayo, Elaheh Sobh-Doush, Carmen Ortiz-Salguero, Javier Villadiego and Reposo Ramírez-Lorca
Int. J. Mol. Sci. 2025, 26(21), 10290; https://doi.org/10.3390/ijms262110290 - 22 Oct 2025
Viewed by 698
Abstract
Aquaporin-4 (AQP4) is expressed in ependymal cells bordering the ventricles, the glia limitans, and pericapillary astrocyte endfeet forming the blood–brain barrier. The sporadic occurrence of obstructive congenital hydrocephalus (OH) has been observed in the offspring of AQP4/ mice generated in [...] Read more.
Aquaporin-4 (AQP4) is expressed in ependymal cells bordering the ventricles, the glia limitans, and pericapillary astrocyte endfeet forming the blood–brain barrier. The sporadic occurrence of obstructive congenital hydrocephalus (OH) has been observed in the offspring of AQP4/ mice generated in the CD1 strain background. Here, we used microarray analysis to explore gene expression profiles in the periaqueductal area from littermate AQP4/ pups at postnatal day 12. We compared wild-type (WT) animals with AQP4/ animals that developed OH (AQP4/-OH) and those that did not (AQP4/-NH). Bioinformatic analysis identified gene sets associated with proliferation and migration of microglia, ependymal cell adhesion, extracellular matrix components, axon myelination, and neuronal synapsis. Among the differentially expressed genes, Spp1—expressed by neonatal CD11c+ microglia—was highlighted in the triple comparison. Spp1 was significantly upregulated in AQP4/-NH and downregulated in AQP4/-OH mice. These findings suggest that CD11c+ microglia, via Spp1 expression, play a key morphogenic role in the aqueduct of Sylvius and their absence, occurring in a small subset of AQP4/-CD1 animals, leads to obstructive hydrocephalus. Full article
(This article belongs to the Special Issue Aquaporins in Brain Disease, 2nd Edition)
Show Figures

Figure 1

17 pages, 8923 KB  
Article
Changes in Cx43 and AQP4 Proteins, and the Capture of 3 kDa Dextran in Subpial Astrocytes of the Rat Medial Prefrontal Cortex after Both Sham Surgery and Sciatic Nerve Injury
by Karolína Bretová, Viktorie Svobodová and Petr Dubový
Int. J. Mol. Sci. 2024, 25(20), 10989; https://doi.org/10.3390/ijms252010989 - 12 Oct 2024
Cited by 1 | Viewed by 1574
Abstract
A subpopulation of astrocytes on the brain’s surface, known as subpial astrocytes, constitutes the “glia limitans superficialis” (GLS), which is an interface between the brain parenchyma and the cerebrospinal fluid (CSF) in the subpial space. Changes in connexin-43 (Cx43) and aquaporin-4 (AQP4) proteins [...] Read more.
A subpopulation of astrocytes on the brain’s surface, known as subpial astrocytes, constitutes the “glia limitans superficialis” (GLS), which is an interface between the brain parenchyma and the cerebrospinal fluid (CSF) in the subpial space. Changes in connexin-43 (Cx43) and aquaporin-4 (AQP4) proteins in subpial astrocytes were examined in the medial prefrontal cortex at postoperative day 1, 3, 7, 14, and 21 after sham operation and sciatic nerve compression (SNC). In addition, we tested the altered uptake of TRITC-conjugated 3 kDa dextran by reactive subpial astrocytes. Cellular immunofluorescence (IF) detection and image analysis were used to examine changes in Cx43 and AQP4 protein levels, as well as TRITC-conjugated 3 kDa dextran, in subpial astrocytes. The intensity of Cx43-IF was significantly increased, but AQP4-IF decreased in subpial astrocytes of sham- and SNC-operated rats during all survival periods compared to naïve controls. Similarly, the uptake of 3 kDa dextran in the GLS was reduced following both sham and SNC operations. The results suggest that both sciatic nerve injury and peripheral tissue injury alone can induce changes in subpial astrocytes related to the spread of their reactivity across the cortical surface mediated by increased amounts of gap junctions. At the same time, water transport and solute uptake were impaired in subpial astrocytes. Full article
(This article belongs to the Special Issue The Function of Glial Cells in the Nervous System)
Show Figures

Figure 1

13 pages, 4623 KB  
Article
An Extensive Study Regarding the Microscopic Anatomy of the Early Fetal Human Optic Nerve
by Mihai Alin Publik, Florin Mihail Filipoiu, Adrian Vasile Dumitru, Andrei Precup, Ioan-Andrei Petrescu, Iulian Slavu, Raluca Florentina Tulin, Adrian Tulin, Andra Ioana Baloiu, Monica Mihaela Cirstoiu and Octavian Munteanu
Neurol. Int. 2024, 16(3), 470-482; https://doi.org/10.3390/neurolint16030035 - 24 Apr 2024
Cited by 4 | Viewed by 3943
Abstract
The development of the optic nerve and its surrounding tissues during the early fetal period is a convoluted period because it spans both the organogenesis period and the fetal period. This study details the microscopic anatomy and histoembryology of the optic nerve in [...] Read more.
The development of the optic nerve and its surrounding tissues during the early fetal period is a convoluted period because it spans both the organogenesis period and the fetal period. This study details the microscopic anatomy and histoembryology of the optic nerve in embryos during the early fetal period, including the second half of the first trimester of pregnancy. Serial sections through the orbit of variously aged embryos allowed us to analyze the nerve in both longitudinal and transverse aspects. A histological assessment and description of the structures surrounding and inside the nerve were performed, highlighting the cellular subtypes involved. By employing immunohistochemical techniques, we could characterize the presence and distribution of astrocytes within the optic nerve. Our findings suggest that by the 8th gestational week (WG) the structures are homologs to all the adult ones but with an early appearance so that maturation processes take place afterward. By this age, the axons forming the nerve are definitive adult axons. The glial cells do not yet exhibit adult phenotype, but their aspect becomes adult toward the 13th week. During its development the optic nerve increases in size then, at 14 weeks, it shrinks considerably, possibly through its neural maturation process. The morphological primordium of the blood–nerve barrier can be first noted at 10 WG and at 13 WG the morphological blood–nerve barrier is definitive. The meningeal primordium can be first noted as a layer of agglomerated fibroblasts, later toward 13 WG splitting in pachymeninx and leptomeninges and leaving space for intrinsic blood vessels. Full article
Show Figures

Figure 1

22 pages, 13426 KB  
Review
Protoplasmic Perivascular Astrocytes Play a Crucial Role in the Development of Enlarged Perivascular Spaces in Obesity, Metabolic Syndrome, and Type 2 Diabetes Mellitus
by Melvin R. Hayden
Neuroglia 2023, 4(4), 307-328; https://doi.org/10.3390/neuroglia4040021 - 1 Dec 2023
Cited by 4 | Viewed by 4135
Abstract
Astrocytes (ACs) are the most abundant cells in the brain and, importantly, are the master connecting and communicating cells that provide structural and functional support for brain cells at all levels of organization. Further, they are recognized as the guardians and housekeepers of [...] Read more.
Astrocytes (ACs) are the most abundant cells in the brain and, importantly, are the master connecting and communicating cells that provide structural and functional support for brain cells at all levels of organization. Further, they are recognized as the guardians and housekeepers of the brain. Protoplasmic perivascular astrocyte endfeet and their basal lamina form the delimiting outermost barrier (glia limitans) of the perivascular spaces in postcapillary venules and are important for the clearance of metabolic waste. They comprise the glymphatic system, which is critically dependent on proper waste removal by the pvACef polarized aquaporin-4 water channels. Also, the protoplasmic perisynaptic astrocyte endfeet (psACef) are important in cradling the neuronal synapses that serve to maintain homeostasis and serve a functional and supportive role in synaptic transmission. Enlarged perivascular spaces (EPVS) are emerging as important aberrant findings on magnetic resonance imaging (MRI), and are associated with white matter hyperintensities, lacunes, and aging, and are accepted as biomarkers for cerebral small vessel disease, increased obesity, metabolic syndrome, and type 2 diabetes. Knowledge is exponentially expanding regarding EPVS along with the glymphatic system, since EPVS are closely associated with impaired glymphatic function and waste removal from the brain to the cerebrospinal fluid and systemic circulation. This review intends to focus on how the pvACef play a crucial role in the development of EPVS. Full article
(This article belongs to the Special Issue Exclusive Papers Collection of Editorial Board Members in Neuroglia)
Show Figures

Figure 1

16 pages, 5216 KB  
Review
The Role of Aquaporins in Spinal Cord Injury
by Terese A. Garcia, Carrie R. Jonak and Devin K. Binder
Cells 2023, 12(13), 1701; https://doi.org/10.3390/cells12131701 - 23 Jun 2023
Cited by 10 | Viewed by 2923
Abstract
Edema formation following traumatic spinal cord injury (SCI) exacerbates secondary injury, and the severity of edema correlates with worse neurological outcome in human patients. To date, there are no effective treatments to directly resolve edema within the spinal cord. The aquaporin-4 (AQP4) water [...] Read more.
Edema formation following traumatic spinal cord injury (SCI) exacerbates secondary injury, and the severity of edema correlates with worse neurological outcome in human patients. To date, there are no effective treatments to directly resolve edema within the spinal cord. The aquaporin-4 (AQP4) water channel is found on plasma membranes of astrocytic endfeet in direct contact with blood vessels, the glia limitans in contact with the cerebrospinal fluid, and ependyma around the central canal. Local expression at these tissue–fluid interfaces allows AQP4 channels to play an important role in the bidirectional regulation of water homeostasis under normal conditions and following trauma. In this review, we consider the available evidence regarding the potential role of AQP4 in edema after SCI. Although more work remains to be carried out, the overall evidence indicates a critical role for AQP4 channels in edema formation and resolution following SCI and the therapeutic potential of AQP4 modulation in edema resolution and functional recovery. Further work to elucidate the expression and subcellular localization of AQP4 during specific phases after SCI will inform the therapeutic modulation of AQP4 for the optimization of histological and neurological outcomes. Full article
(This article belongs to the Special Issue Astrocytes in CNS Disorders)
Show Figures

Figure 1

15 pages, 10179 KB  
Article
A Novel Localization of METTL7A in Bergmann Glial Cells in Human Cerebellum
by América Vera-Montecinos, Jordi Galiano-Landeira, Mònica Roldán, Francisco Vidal-Domènech, Enrique Claro and Belén Ramos
Int. J. Mol. Sci. 2023, 24(9), 8405; https://doi.org/10.3390/ijms24098405 - 7 May 2023
Cited by 8 | Viewed by 3544
Abstract
Methyltransferase-like protein 7A (METTL7A) is a member of the METTL family of methyltransferases.Little information is available regarding the cellular expression of METTL7A in the brain. METTL7A is commonly located in the endoplasmic reticulum and to a lesser extent, in the lipid droplets of [...] Read more.
Methyltransferase-like protein 7A (METTL7A) is a member of the METTL family of methyltransferases.Little information is available regarding the cellular expression of METTL7A in the brain. METTL7A is commonly located in the endoplasmic reticulum and to a lesser extent, in the lipid droplets of some cells. Several studies have reported altered protein and RNA levels in different brain areas in schizophrenia. One of these studies found reduced protein levels of METTL7A in the cerebellar cortex in schizophrenia and stress murine models. Since there is limited information in the literature about METTL7A, we characterized its cellular and subcellular localizations in the human cerebellum using immunohistochemical analysis with laser confocal microscopy. Our study reveals a novel METTL7A localization in GFAP-positive cells, with higher expression in the end-feet of the Bergmann glia, which participate in the cerebrospinal fluid–brain parenchyma barrier. Further 3D reconstruction image analysis showed that METTL7A was expressed in the contacts between the Bergmann glia and Purkinje neurons. METTL7A was also detected in lipid droplets in some cells in the white matter. The localization of METTL7A in the human cerebellar glia limitans could suggest a putative role in maintaining the cerebellar parenchyma homeostasis and in the regulation of internal cerebellar circuits by modulating the synaptic activity of Purkinje neurons. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Neurobiology in Spain)
Show Figures

Figure 1

15 pages, 4575 KB  
Article
Aquaporin-4 Expression Switches from White to Gray Matter Regions during Postnatal Development of the Central Nervous System
by Francisco Mayo, Lourdes González-Vinceiro, Laura Hiraldo-González, Claudia Calle-Castillejo, Sara Morales-Alvarez, Reposo Ramírez-Lorca and Miriam Echevarría
Int. J. Mol. Sci. 2023, 24(3), 3048; https://doi.org/10.3390/ijms24033048 - 3 Feb 2023
Cited by 13 | Viewed by 4240
Abstract
Aquaporin-4 (AQP4) is the most abundant water channel in the central nervous system and plays a fundamental role in maintaining water homeostasis there. In adult mice, AQP4 is located mainly in ependymal cells, in the endfeet of perivascular astrocytes, and in the glia [...] Read more.
Aquaporin-4 (AQP4) is the most abundant water channel in the central nervous system and plays a fundamental role in maintaining water homeostasis there. In adult mice, AQP4 is located mainly in ependymal cells, in the endfeet of perivascular astrocytes, and in the glia limitans. Meanwhile, its expression, location, and function throughout postnatal development remain largely unknown. Here, the expression of AQP4 mRNA was studied by in situ hybridization and RT-qPCR, and the localization and amount of protein was studied by immunofluorescence and western blotting, both in the brain and spinal cord. For this, wild-type mice of the C57BL/6 line, aged 1, 3, 7, 11, 20, and 60 days, and 18 months were used. The results showed a change in both the expression and location of AQP4 in postnatal development compared to those during adult life. In the early stages of postnatal development it appears in highly myelinated areas, such as the corpus callosum or cerebellum, and as the animal grows, it disappears from these areas, passing through the cortical regions of the forebrain and concentrating around the blood vessels. These findings suggest an unprecedented possible role for AQP4 in the early cell differentiation process, during the first days of life in the newborn animal, which will lead to myelination. Full article
(This article belongs to the Special Issue Aquaporins in Brain Disease)
Show Figures

Figure 1

18 pages, 4471 KB  
Review
Cellular Distribution of Brain Aquaporins and Their Contribution to Cerebrospinal Fluid Homeostasis and Hydrocephalus
by José Luis Trillo-Contreras, Reposo Ramírez-Lorca, Javier Villadiego and Miriam Echevarría
Biomolecules 2022, 12(4), 530; https://doi.org/10.3390/biom12040530 - 31 Mar 2022
Cited by 28 | Viewed by 4905
Abstract
Brain aquaporins facilitate the movement of water between the four water compartments: blood, cerebrospinal fluid, interstitial fluid, and intracellular fluid. This work analyzes the expression of the four most abundant aquaporins (AQPs) (AQP1, AQP4, AQP9, and AQP11) in the brains of mice and [...] Read more.
Brain aquaporins facilitate the movement of water between the four water compartments: blood, cerebrospinal fluid, interstitial fluid, and intracellular fluid. This work analyzes the expression of the four most abundant aquaporins (AQPs) (AQP1, AQP4, AQP9, and AQP11) in the brains of mice and discuss their contribution to hydrocephalus. We analyzed available data from single-cell RNA sequencing of the central nervous system of mice to describe the expression of aquaporins and compare their distribution with that based on qPCR, western blot, and immunohistochemistry assays. Expression of AQP1 in the apical cell membrane of choroid plexus epithelial cells and of AQP4 in ependymal cells, glia limitans, and astrocyte processes in the pericapillary end foot is consistent with the involvement of both proteins in cerebrospinal fluid homeostasis. The expression of both aquaporins compensates for experimentally induced hydrocephalus in the animals. Recent data demonstrate that hypoxia in aged animals alters AQP4 expression in the choroidal plexus and cortex, increasing the ventricle size and intraventricular pressure. Cerebral distensibility is reduced in parallel with a reduction in cerebrospinal fluid drainage and cognitive deterioration. We propose that aged mice chronically exposed to hypoxia represent an excellent experimental model for studying the pathophysiological characteristics of idiopathic normal pressure hydrocephalus and roles for AQPs in such disease. Full article
Show Figures

Figure 1

10 pages, 3073 KB  
Article
Juxtavascular Microglia Scavenge Dying Pericytes and Vascular Smooth Muscle Cells in Diabetic Retinopathy
by Tom A. Gardiner and Alan W. Stitt
Int. J. Transl. Med. 2022, 2(1), 41-50; https://doi.org/10.3390/ijtm2010004 - 19 Jan 2022
Cited by 8 | Viewed by 3854
Abstract
Diabetic retinopathy (DR) remains a prevalent complication of diabetes and a major cause of vision loss among the working population. Selective loss of pericytes and vascular smooth muscle cells (SMCs), the mural cells of the retinal blood vessels, is pathognomonic of the vasodegenerative [...] Read more.
Diabetic retinopathy (DR) remains a prevalent complication of diabetes and a major cause of vision loss among the working population. Selective loss of pericytes and vascular smooth muscle cells (SMCs), the mural cells of the retinal blood vessels, is pathognomonic of the vasodegenerative element of diabetic retinopathy, and recent studies suggest a central role for autophagy-dependent cell death in this pathology. Our first study of archival electron micrographs from diabetic donor retina provided evidence for the involvement of autophagy in mural cell death during DR and the current report extends those observations to the fate of mural cell corpses in the vascular wall. Here we show that the efferocytosis, or phagocytic removal of dying mural cells, is carried out by a population of juxtavascular microglia (JVM). This population of microglia are well-characterised in the brain but previously unreported in the retina. We demonstrate that JVM are distinct from perivascular macrophages as they participate in the glia limitans of the retinal vasculature and constitute an integral component of the neurovascular unit of the retina. Importantly, mural cells undergoing active phagocytic engulfment appeared to represent relatively early stages in autophagy-dependent cell death, suggesting that the more degraded pericyte and SMC corpses, known as “ghosts”, have evaded efficient efferocytosis and undergone secondary necrosis. The alternative fates of mural cell corpses in the retinal vasculature may have important implications for inflammatory processes in the vasodegenerative pathology characteristic of DR. Full article
(This article belongs to the Special Issue Diabetic Retinopathy)
Show Figures

Figure 1

20 pages, 29374 KB  
Review
The Glymphatic System (En)during Inflammation
by Frida Lind-Holm Mogensen, Christine Delle and Maiken Nedergaard
Int. J. Mol. Sci. 2021, 22(14), 7491; https://doi.org/10.3390/ijms22147491 - 13 Jul 2021
Cited by 153 | Viewed by 35700
Abstract
The glymphatic system is a fluid-transport system that accesses all regions of the brain. It facilitates the exchange of cerebrospinal fluid and interstitial fluid and clears waste from the metabolically active brain. Astrocytic endfeet and their dense expression of the aquaporin-4 water channels [...] Read more.
The glymphatic system is a fluid-transport system that accesses all regions of the brain. It facilitates the exchange of cerebrospinal fluid and interstitial fluid and clears waste from the metabolically active brain. Astrocytic endfeet and their dense expression of the aquaporin-4 water channels promote fluid exchange between the perivascular spaces and the neuropil. Cerebrospinal and interstitial fluids are together transported back to the vascular compartment by meningeal and cervical lymphatic vessels. Multiple lines of work show that neurological diseases in general impair glymphatic fluid transport. Insofar as the glymphatic system plays a pseudo-lymphatic role in the central nervous system, it is poised to play a role in neuroinflammation. In this review, we discuss how the association of the glymphatic system with the meningeal lymphatic vessel calls for a renewal of established concepts on the CNS as an immune-privileged site. We also discuss potential approaches to target the glymphatic system to combat neuroinflammation. Full article
(This article belongs to the Special Issue Control of Astrocytes Function and Phenotype: Role in Neuropathology)
Show Figures

Figure 1

20 pages, 6309 KB  
Article
Dysregulation of Blood-Brain Barrier and Exacerbated Inflammatory Response in Cx47-Deficient Mice after Induction of EAE
by Filippos Stavropoulos, Elena Georgiou, Irene Sargiannidou and Kleopas A. Kleopa
Pharmaceuticals 2021, 14(7), 621; https://doi.org/10.3390/ph14070621 - 28 Jun 2021
Cited by 19 | Viewed by 5091
Abstract
Induction of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), in connexin 32 (Cx32) or Cx47 knockout (KO) mice with deficiency in oligodendrocyte gap junctions (GJs) results in a more severe disease course. In particular, Cx47 KO EAE mice experience [...] Read more.
Induction of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), in connexin 32 (Cx32) or Cx47 knockout (KO) mice with deficiency in oligodendrocyte gap junctions (GJs) results in a more severe disease course. In particular, Cx47 KO EAE mice experience an earlier EAE onset and more pronounced disease severity, accompanied by dysregulated pro-inflammatory responses preceding the disease manifestations. In this study, analysis of relevant pro-inflammatory cytokines in wild type EAE, Cx32 KO EAE, and Cx47 KO EAE mice revealed altered expression of Vcam-1 preceding EAE [7 days post injection (dpi)], of Ccl2 at the onset of EAE (12 dpi), and of Gm-csf at the peak of EAE (24 dpi) in Cx47 KO EAE mice. Moreover, Cx47 KO EAE mice exhibited more severe blood-spinal cord barrier (BSCB) disruption, enhanced astrogliosis with defects in tight junction formation at the glia limitans, and increased T-cell infiltration prior to disease onset. Thus, Cx47 deficiency appears to cause dysregulation of the inflammatory profile and BSCB integrity, promoting early astrocyte responses in Cx47 KO EAE mice that lead to a more severe EAE outcome. Further investigation into the role of oligodendrocytic Cx47 in EAE and multiple sclerosis pathology is warranted. Full article
(This article belongs to the Special Issue Cerebral Production and Action of Pro-inflammatory Cytokines)
Show Figures

Graphical abstract

27 pages, 3355 KB  
Review
Structure and Junctional Complexes of Endothelial, Epithelial and Glial Brain Barriers
by Mariana Castro Dias, Josephine A. Mapunda, Mykhailo Vladymyrov and Britta Engelhardt
Int. J. Mol. Sci. 2019, 20(21), 5372; https://doi.org/10.3390/ijms20215372 - 29 Oct 2019
Cited by 124 | Viewed by 17138
Abstract
The homeostasis of the central nervous system (CNS) is ensured by the endothelial, epithelial, mesothelial and glial brain barriers, which strictly control the passage of molecules, solutes and immune cells. While the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) [...] Read more.
The homeostasis of the central nervous system (CNS) is ensured by the endothelial, epithelial, mesothelial and glial brain barriers, which strictly control the passage of molecules, solutes and immune cells. While the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) have been extensively investigated, less is known about the epithelial and mesothelial arachnoid barrier and the glia limitans. Here, we summarize current knowledge of the cellular composition of the brain barriers with a specific focus on describing the molecular constituents of their junctional complexes. We propose that the brain barriers maintain CNS immune privilege by dividing the CNS into compartments that differ with regard to their role in immune surveillance of the CNS. We close by providing a brief overview on experimental tools allowing for reliable in vivo visualization of the brain barriers and their junctional complexes and thus the respective CNS compartments. Full article
(This article belongs to the Special Issue The Tight Junction and Its Proteins: More Than Just a Barrier)
Show Figures

Figure 1

14 pages, 10674 KB  
Article
Connexin 43 Controls the Astrocyte Immunoregulatory Phenotype
by Anne-Cécile Boulay, Alice Gilbert, Vanessa Oliveira Moreira, Corinne Blugeon, Sandrine Perrin, Juliette Pouch, Stéphane Le Crom, Bertrand Ducos and Martine Cohen-Salmon
Brain Sci. 2018, 8(4), 50; https://doi.org/10.3390/brainsci8040050 - 22 Mar 2018
Cited by 20 | Viewed by 7551
Abstract
Astrocytes are the most abundant glial cells of the central nervous system and have recently been recognized as crucial in the regulation of brain immunity. In most neuropathological conditions, astrocytes are prone to a radical phenotypical change called reactivity, which plays a key [...] Read more.
Astrocytes are the most abundant glial cells of the central nervous system and have recently been recognized as crucial in the regulation of brain immunity. In most neuropathological conditions, astrocytes are prone to a radical phenotypical change called reactivity, which plays a key role in astrocyte contribution to neuroinflammation. However, how astrocytes regulate brain immunity in healthy conditions is an understudied question. One of the astroglial molecule involved in these regulations might be Connexin 43 (Cx43), a gap junction protein highly enriched in astrocyte perivascular endfeet-terminated processes forming the glia limitans. Indeed, Cx43 deletion in astrocytes (Cx43KO) promotes a continuous immune recruitment and an autoimmune response against an astrocyte protein, without inducing any brain lesion. To investigate the molecular basis of this unique immune response, we characterized the polysomal transcriptome of hippocampal astrocytes deleted for Cx43. Our results demonstrate that, in the absence of Cx43, astrocytes adopt an atypical reactive status with no change in most canonical astrogliosis markers, but with an upregulation of molecules promoting immune recruitment, complement activation as well as anti-inflammatory processes. Intriguingly, while several of these upregulated transcriptional events suggested an activation of the γ-interferon pathway, no increase in this cytokine or activation of related signaling pathways were found in Cx43KO. Finally, deletion of astroglial Cx43 was associated with the upregulation of several angiogenic factors, consistent with an increase in microvascular density in Cx43KO brains. Collectively, these results strongly suggest that Cx43 controls immunoregulatory and angiogenic properties of astrocytes. Full article
Show Figures

Figure 1

14 pages, 3575 KB  
Review
Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow
by Tsutomu Nakada, Ingrid L. Kwee, Hironaka Igarashi and Yuji Suzuki
Int. J. Mol. Sci. 2017, 18(8), 1798; https://doi.org/10.3390/ijms18081798 - 18 Aug 2017
Cited by 72 | Viewed by 15650
Abstract
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics [...] Read more.
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics. Full article
(This article belongs to the Special Issue Cerebral Blood Flow and Metabolism)
Show Figures

Graphical abstract

Back to TopTop