Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = genetically encoded red fluorescent proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4512 KiB  
Article
Fluorescence Lifetime Multiplexing with Fluorogen-Activating FAST Protein Variants and Red-Shifted Arylidene–Imidazolone Derivative as Fluorogen
by Aidar R. Gilvanov, Ivan N. Myasnyanko, Sergey A. Goncharuk, Marina V. Goncharuk, Vadim S. Kublitski, Daria V. Bodunova, Svetlana V. Sidorenko, Eugene G. Maksimov, Mikhail S. Baranov and Yulia A. Bogdanova
Biosensors 2025, 15(5), 274; https://doi.org/10.3390/bios15050274 - 29 Apr 2025
Viewed by 546
Abstract
Fluorescence-lifetime imaging microscopy (FLIM) is a powerful technique for highly multiplexed imaging in live cells. In this work, we present a genetically encoded FLIM multiplexing platform based on a combination of fluorogen-activating protein FAST and red-shifted fluorogen N871b from the arylidene–imidazolone family. We [...] Read more.
Fluorescence-lifetime imaging microscopy (FLIM) is a powerful technique for highly multiplexed imaging in live cells. In this work, we present a genetically encoded FLIM multiplexing platform based on a combination of fluorogen-activating protein FAST and red-shifted fluorogen N871b from the arylidene–imidazolone family. We showed that a series of FAST protein mutants exhibit similar steady-state optical properties in complex with N871b fluorogen but have different fluorescence lifetimes. The similar brightness and binding strength of pairs of these FAST protein variants with N871b allows them to be successfully used for multiplexing up to three intracellular structures of living cells simultaneously. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

16 pages, 5439 KiB  
Article
Unraveling Microviscosity Changes Induced in Cancer Cells by Photodynamic Therapy with Targeted Genetically Encoded Photosensitizer
by Liubov E. Shimolina, Aleksandra E. Khlynova, Vadim V. Elagin, Pavel A. Bureev, Petr S. Sherin, Marina K. Kuimova and Marina V. Shirmanova
Biomedicines 2024, 12(11), 2550; https://doi.org/10.3390/biomedicines12112550 - 8 Nov 2024
Cited by 1 | Viewed by 1447
Abstract
Background: Despite the fundamental importance of cell membrane microviscosity, changes in this biophysical parameter of membranes during photodynamic therapy (PDT) have not been fully understood. Methods: In this work, changes in the microviscosity of membranes of live HeLa Kyoto tumor cells were studied [...] Read more.
Background: Despite the fundamental importance of cell membrane microviscosity, changes in this biophysical parameter of membranes during photodynamic therapy (PDT) have not been fully understood. Methods: In this work, changes in the microviscosity of membranes of live HeLa Kyoto tumor cells were studied during PDT with KillerRed, a genetically encoded photosensitizer, in different cellular localizations. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive BODIPY2 rotor. Results: Depending on the localization of the phototoxic protein, different effects on membrane microviscosity were observed. With nuclear localization of KillerRed, a gradual decrease in microviscosity was detected throughout the entire observation period, while for membrane localization of KillerRed, a dramatic increase in microviscosity was observed in the first minutes after PDT, and then a significant decrease at later stages of monitoring. The obtained data on cell monolayers are in good agreement with the data obtained for 3D tumor spheroids. Conclusions: These results indicate the involvement of membrane microviscosity in the response of tumor cells to PDT, which strongly depends on the localization of reactive oxygen species attack via targeting of a genetically encoded photosensitizer. Full article
(This article belongs to the Special Issue Photodynamic Therapy (3rd Edition))
Show Figures

Figure 1

23 pages, 3447 KiB  
Article
Hypoxia-Induced Mitochondrial ROS and Function in Pulmonary Arterial Endothelial Cells
by Harrison Wang, Teng-Yao Song, Jorge Reyes-García and Yong-Xiao Wang
Cells 2024, 13(21), 1807; https://doi.org/10.3390/cells13211807 - 1 Nov 2024
Cited by 3 | Viewed by 2291
Abstract
Pulmonary artery endothelial cells (PAECs) are a major contributor to hypoxic pulmonary hypertension (PH) due to the possible roles of reactive oxygen species (ROS). However, the molecular mechanisms and functional roles of ROS in PAECs are not well established. In this study, we [...] Read more.
Pulmonary artery endothelial cells (PAECs) are a major contributor to hypoxic pulmonary hypertension (PH) due to the possible roles of reactive oxygen species (ROS). However, the molecular mechanisms and functional roles of ROS in PAECs are not well established. In this study, we first used Amplex UltraRed reagent to assess hydrogen peroxide (H2O2) generation. The result indicated that hypoxic exposure resulted in a significant increase in Amplex UltraRed-derived fluorescence (i.e., H2O2 production) in human PAECs. To complement this result, we employed lucigenin as a probe to detect superoxide (O2) production. Our assays showed that hypoxia largely increased O2 production. Hypoxia also enhanced H2O2 production in the mitochondria from PAECs. Using the genetically encoded H2O2 sensor HyPer, we further revealed the hypoxic ROS production in PAECs, which was fully blocked by the mitochondrial inhibitor rotenone or myxothiazol. Interestingly, hypoxia caused an increase in the migration of PAECs, determined by scratch wound assay. In contrast, nicotine, a major cigarette or e-cigarette component, had no effect. Moreover, hypoxia and nicotine co-exposure further increased migration. Transfection of lentiviral shRNAs specific for the mitochondrial Rieske iron–sulfur protein (RISP), which knocked down its expression and associated ROS generation, inhibited the hypoxic migration of PAECs. Hypoxia largely increased the proliferation of PAECs, determined using Ki67 staining and direct cell number accounting. Similarly, nicotine caused a large increase in proliferation. Moreover, hypoxia/nicotine co-exposure elicited a further increase in cell proliferation. RISP knockdown inhibited the proliferation of PAECs following hypoxia, nicotine exposure, and hypoxia/nicotine co-exposure. Taken together, our data demonstrate that hypoxia increases RISP-mediated mitochondrial ROS production, migration, and proliferation in human PAECs; nicotine has no effect on migration, increases proliferation, and promotes hypoxic proliferation; the effects of nicotine are largely mediated by RISP-dependent mitochondrial ROS signaling. Conceivably, PAECs may contribute to PH via the RISP-mediated mitochondrial ROS. Full article
Show Figures

Figure 1

12 pages, 2115 KiB  
Article
Natural-Target-Mimicking Translocation-Based Fluorescent Sensor for Detection of SARS-CoV-2 PLpro Protease Activity and Virus Infection in Living Cells
by Elena L. Sokolinskaya, Olga N. Ivanova, Irina T. Fedyakina, Alexander V. Ivanov and Konstantin A. Lukyanov
Int. J. Mol. Sci. 2024, 25(12), 6635; https://doi.org/10.3390/ijms25126635 - 17 Jun 2024
Cited by 1 | Viewed by 1767
Abstract
Papain-like protease PLpro, a domain within a large polyfunctional protein, nsp3, plays key roles in the life cycle of SARS-CoV-2, being responsible for the first events of cleavage of a polyprotein into individual proteins (nsp1–4) as well as for the suppression of cellular [...] Read more.
Papain-like protease PLpro, a domain within a large polyfunctional protein, nsp3, plays key roles in the life cycle of SARS-CoV-2, being responsible for the first events of cleavage of a polyprotein into individual proteins (nsp1–4) as well as for the suppression of cellular immunity. Here, we developed a new genetically encoded fluorescent sensor, named PLpro-ERNuc, for detection of PLpro activity in living cells using a translocation-based readout. The sensor was designed as follows. A fragment of nsp3 protein was used to direct the sensor on the cytoplasmic surface of the endoplasmic reticulum (ER) membrane, thus closely mimicking the natural target of PLpro. The fluorescent part included two bright fluorescent proteins—red mScarlet I and green mNeonGreen—separated by a linker with the PLpro cleavage site. A nuclear localization signal (NLS) was attached to ensure accumulation of mNeonGreen into the nucleus upon cleavage. We tested PLpro-ERNuc in a model of recombinant PLpro expressed in HeLa cells. The sensor demonstrated the expected cytoplasmic reticular network in the red and green channels in the absence of protease, and efficient translocation of the green signal into nuclei in the PLpro-expressing cells (14-fold increase in the nucleus/cytoplasm ratio). Then, we used PLpro-ERNuc in a model of Huh7.5 cells infected with the SARS-CoV-2 virus, where it showed robust ER-to-nucleus translocation of the green signal in the infected cells 24 h post infection. We believe that PLpro-ERNuc represents a useful tool for screening PLpro inhibitors as well as for monitoring virus spread in a culture. Full article
(This article belongs to the Special Issue New Advances in Molecular Research of Coronavirus)
Show Figures

Figure 1

14 pages, 2476 KiB  
Article
A Combination of Library Screening and Rational Mutagenesis Expands the Available Color Palette of the Smallest Fluorogen-Activating Protein Tag nanoFAST
by Nadezhda S. Baleeva, Yulia A. Bogdanova, Marina V. Goncharuk, Anatolii I. Sokolov, Ivan N. Myasnyanko, Vadim S. Kublitski, Alexander Yu. Smirnov, Aidar R. Gilvanov, Sergey A. Goncharuk, Konstantin S. Mineev and Mikhail S. Baranov
Int. J. Mol. Sci. 2024, 25(5), 3054; https://doi.org/10.3390/ijms25053054 - 6 Mar 2024
Cited by 3 | Viewed by 1832
Abstract
NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro [...] Read more.
NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein. Full article
Show Figures

Figure 1

17 pages, 3249 KiB  
Article
Effects of Photodynamic Therapy on Tumor Metabolism and Oxygenation Revealed by Fluorescence and Phosphorescence Lifetime Imaging
by Marina V. Shirmanova, Maria M. Lukina, Marina A. Sirotkina, Liubov E. Shimolina, Varvara V. Dudenkova, Nadezhda I. Ignatova, Seiji Tobita, Vladislav I. Shcheslavskiy and Elena V. Zagaynova
Int. J. Mol. Sci. 2024, 25(3), 1703; https://doi.org/10.3390/ijms25031703 - 30 Jan 2024
Cited by 9 | Viewed by 2168
Abstract
This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers—chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and [...] Read more.
This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers—chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and genetically encoded photosensitizer KillerRed targeted to the chromatin. Metabolism of tumor cells was assessed by the fluorescence lifetime of the metabolic redox-cofactor NAD(P)H, using fluorescence lifetime imaging. Oxygen content was assessed using phosphorescence lifetime macro-imaging with an oxygen-sensitive probe. For visualization of the perfused microvasculature, an optical coherence tomography-based angiography was used. It was found that PDT induces different alterations in cellular metabolism, depending on the degree of oxygen depletion. Moderate decrease in oxygen in the case of KillerRed was accompanied by an increase in the fraction of free NAD(P)H, an indicator of glycolytic switch, early after the treatment. Severe hypoxia after PDT with Photoditazine resulted from a vascular shutdown yielded in a persistent increase in protein-bound (mitochondrial) fraction of NAD(P)H. These findings improve our understanding of physiological mechanisms of PDT in cellular and vascular modes and can be useful to develop new approaches to monitoring its efficacy. Full article
(This article belongs to the Special Issue Optical Molecular Imaging in Cancer Research and Diagnosis)
Show Figures

Figure 1

13 pages, 3114 KiB  
Article
Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form
by Konstantin M. Boyko, Maria G. Khrenova, Alena Y. Nikolaeva, Pavel V. Dorovatovskii, Anna V. Vlaskina, Oksana M. Subach, Vladimir O. Popov and Fedor V. Subach
Int. J. Mol. Sci. 2023, 24(9), 7906; https://doi.org/10.3390/ijms24097906 - 26 Apr 2023
Cited by 1 | Viewed by 1986
Abstract
The mRubyFT is a monomeric genetically encoded fluorescent timer based on the mRuby2 fluorescent protein, which is characterized by the complete maturation of the blue form with the subsequent conversion to the red one. It has higher brightness in mammalian cells and higher [...] Read more.
The mRubyFT is a monomeric genetically encoded fluorescent timer based on the mRuby2 fluorescent protein, which is characterized by the complete maturation of the blue form with the subsequent conversion to the red one. It has higher brightness in mammalian cells and higher photostability compared with other fluorescent timers. A high-resolution structure is a known characteristic of the mRubyFT with the red form chromophore, but structural details of its blue form remain obscure. In order to obtain insight into this, we obtained an S148I variant of the mRubyFT (mRubyFTS148I) with the blocked over time blue form of the chromophore. X-ray data at a 1.8 Å resolution allowed us to propose a chromophore conformation and its interactions with the neighboring residues. The imidazolidinone moiety of the chromophore is completely matured, being a conjugated π-system. The methine bridge is not oxidized in the blue form bringing flexibility to the phenolic moiety that manifests itself in poor electron density. Integration of these data with the results of molecular dynamic simulation disclosed that the OH group of the phenolic moiety forms a hydrogen bond with the side chain of the T163 residue. A detailed comparison of mRubyFTS148I with other available structures of the blue form of fluorescent proteins, Blue102 and mTagBFP, revealed a number of characteristic differences. Molecular dynamic simulations with the combined quantum mechanic/molecular mechanic potentials demonstrated that the blue form exists in two protonation states, anion and zwitterion, both sharing enolate tautomeric forms of the C=C–O fragment. These two forms have similar excitation energies, as evaluated by calculations. Finally, excited state molecular dynamic simulations showed that excitation of the chromophore in both protonation states leads to the same anionic fluorescent state. The data obtained shed light on the structural features and spectral properties of the blue form of the mRubyFT timer. Full article
(This article belongs to the Special Issue Advanced Research in Fluorescent Proteins)
Show Figures

Figure 1

28 pages, 8574 KiB  
Article
Blue-to-Red TagFT, mTagFT, mTsFT, and Green-to-FarRed mNeptusFT2 Proteins, Genetically Encoded True and Tandem Fluorescent Timers
by Oksana M. Subach, Anna V. Vlaskina, Yulia K. Agapova, Alena Y. Nikolaeva, Konstantin V. Anokhin, Kiryl D. Piatkevich, Maxim V. Patrushev, Konstantin M. Boyko and Fedor V. Subach
Int. J. Mol. Sci. 2023, 24(4), 3279; https://doi.org/10.3390/ijms24043279 - 7 Feb 2023
Cited by 2 | Viewed by 3384
Abstract
True genetically encoded monomeric fluorescent timers (tFTs) change their fluorescent color as a result of the complete transition of the blue form into the red form over time. Tandem FTs (tdFTs) change their color as a consequence of the fast and slow independent [...] Read more.
True genetically encoded monomeric fluorescent timers (tFTs) change their fluorescent color as a result of the complete transition of the blue form into the red form over time. Tandem FTs (tdFTs) change their color as a consequence of the fast and slow independent maturation of two forms with different colors. However, tFTs are limited to derivatives of the mCherry and mRuby red fluorescent proteins and have low brightness and photostability. The number of tdFTs is also limited, and there are no blue-to-red or green-to-far-red tdFTs. tFTs and tdFTs have not previously been directly compared. Here, we engineered novel blue-to-red tFTs, called TagFT and mTagFT, which were derived from the TagRFP protein. The main spectral and timing characteristics of the TagFT and mTagFT timers were determined in vitro. The brightnesses and photoconversions of the TagFT and mTagFT tFTs were characterized in live mammalian cells. The engineered split version of the TagFT timer matured in mammalian cells at 37 °C and allowed the detection of interactions between two proteins. The TagFT timer under the control of the minimal arc promoter, successfully visualized immediate-early gene induction in neuronal cultures. We also developed and optimized green-to-far-red and blue-to-red tdFTs, named mNeptusFT and mTsFT, which were based on mNeptune-sfGFP and mTagBFP2-mScarlet fusion proteins, respectively. We developed the FucciFT2 system based on the TagFT-hCdt1-100/mNeptusFT2-hGeminin combination, which could visualize the transitions between the G1 and S/G2/M phases of the cell cycle with better resolution than the conventional Fucci system because of the fluorescent color changes of the timers over time in different phases of the cell cycle. Finally, we determined the X-ray crystal structure of the mTagFT timer and analyzed it using directed mutagenesis. Full article
(This article belongs to the Special Issue Advanced Research in Fluorescent Proteins)
Show Figures

Graphical abstract

31 pages, 4854 KiB  
Article
Delineating Ultrafast Structural Dynamics of a Green-Red Fluorescent Protein for Calcium Sensing
by Taylor D. Krueger, Longteng Tang and Chong Fang
Biosensors 2023, 13(2), 218; https://doi.org/10.3390/bios13020218 - 2 Feb 2023
Cited by 6 | Viewed by 3391
Abstract
Fluorescent proteins (FPs) are indispensable tools for noninvasive bioimaging and sensing. Measuring the free cellular calcium (Ca2+) concentrations in vivo with genetically encodable FPs can be a relatively direct measure of neuronal activity due to the complex signaling role of these [...] Read more.
Fluorescent proteins (FPs) are indispensable tools for noninvasive bioimaging and sensing. Measuring the free cellular calcium (Ca2+) concentrations in vivo with genetically encodable FPs can be a relatively direct measure of neuronal activity due to the complex signaling role of these ions. REX-GECO1 is a recently developed red-green emission and excitation ratiometric FP-based biosensor that achieves a high dynamic range due to differences in the chromophore response to light excitation with and without calcium ions. Using steady-state electronic measurements (UV/Visible absorption and emission), along with time-resolved spectroscopic techniques including femtosecond transient absorption (fs-TA) and femtosecond stimulated Raman spectroscopy (FSRS), the potential energy surfaces of these unique biosensors are unveiled with vivid details. The ground-state structural characterization of the Ca2+-free biosensor via FSRS reveals a more spacious protein pocket that allows the chromophore to efficiently twist and reach a dark state. In contrast, the more compressed cavity within the Ca2+-bound biosensor results in a more heterogeneous distribution of chromophore populations that results in multi-step excited state proton transfer (ESPT) pathways on the sub-140 fs, 600 fs, and 3 ps timescales. These results enable rational design strategies to enlarge the spectral separation between the protonated/deprotonated forms and the Stokes shift leading to a larger dynamic range and potentially higher fluorescence quantum yield, which should be broadly applicable to the calcium imaging and biosensor communities. Full article
(This article belongs to the Special Issue Fluorescent Protein-Based Sensing and Detection)
Show Figures

Graphical abstract

1 pages, 153 KiB  
Abstract
Genetically Encoded Photosensitizer Targeted to Methylated DNA
by Anastasiia Gorshkova, Dmitry Gorbachev, Mariia Moshareva, Lidiya Putlyaeva and Konstantin Lukyanov
Med. Sci. Forum 2022, 14(1), 21; https://doi.org/10.3390/ECMC2022-13654 - 16 Nov 2022
Viewed by 1445
Abstract
Genetically encoded photosensitizers are widely used in fundamental research and translational medicine due to their ability to generate reactive oxygen species (ROS) after photosensitizing. Previously, it was shown in mice that red dimeric fluorescent protein KillerRed is a potential photosensitizer that can be [...] Read more.
Genetically encoded photosensitizers are widely used in fundamental research and translational medicine due to their ability to generate reactive oxygen species (ROS) after photosensitizing. Previously, it was shown in mice that red dimeric fluorescent protein KillerRed is a potential photosensitizer that can be used for photodynamic therapy of cancer. In addition, it was demonstrated that HeLa cells expressing KillerRed fused to histone H2B cease proliferation upon illumination. A DNA repair protein, X-ray repair cross-complementing protein 1 (XRCC1), redistributed in the cell nuclei, indicating that the mechanism of phototoxic action of the construct involved DNA breaks generation. Here, we have constructed and tested a new genetically encoded photosensitizer molecule which introduces DNA breaks and activates the repair system in cancer-derived and embryonic cell lines more efficiently than previously described. The molecule consists of two parts: a SuperNova2 (monomeric mutant of KillerRed with enhanced phototoxicity) and methyl-CpG binding protein MECP2. The complex activates XRCC1 redistribution after illumination with lower power compared to the previously used construct. We suppose it can be explained by the tighter contact between photosensitizer and DNA. In addition, we hypothesize that the system should be error-prone for the expressed genes as it is targeted to the DNA which is silenced by methylation. Taking everything into consideration, the new genetically encoded construct has shown the improved ability to generate DNA breaks in the cancer cell lines. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Medicinal Chemistry)
18 pages, 5613 KiB  
Article
LSSmScarlet2 and LSSmScarlet3, Chemically Stable Genetically Encoded Red Fluorescent Proteins with a Large Stokes’ Shift
by Oksana M. Subach, Anna V. Vlaskina, Yulia K. Agapova, Kiryl D. Piatkevich, Maxim V. Patrushev, Valeriya R. Samygina and Fedor V. Subach
Int. J. Mol. Sci. 2022, 23(19), 11051; https://doi.org/10.3390/ijms231911051 - 21 Sep 2022
Cited by 2 | Viewed by 3925
Abstract
Red fluorescent proteins with a large Stokes’ shift (LSSRFPs) are genetically encoded and efficiently excited by 488 nm light, allowing simultaneous dual-color one- and two-photon fluorescence imaging and fluorescence correlation spectroscopy in combination with green fluorescent proteins FPs. Recently, based on the conventional [...] Read more.
Red fluorescent proteins with a large Stokes’ shift (LSSRFPs) are genetically encoded and efficiently excited by 488 nm light, allowing simultaneous dual-color one- and two-photon fluorescence imaging and fluorescence correlation spectroscopy in combination with green fluorescent proteins FPs. Recently, based on the conventional bright mScarlet RFP, we developed the LSSRFP LSSmScarlet. LSSmScarlet is characterized by two pKa values at pH values of 1.9 and 5.8. In this study, we developed improved versions of LSSmScarlet, named LSSmScarlet2 and LSSmScarlet3, which are characterized by a Stokes’ shift of 128 nm and extreme pH stability with a single pKa value of 2.2. LSSmScarlet2 and LSSmScarlet3 had 1.8-fold faster and 3-fold slower maturation than LSSmScarlet, respectively. In addition, both LSSRFPs were 1.5- to 1.6-fold more photostable and more chemically resistant to denaturation by guanidinium chloride and guanidinium thiocyanate. We also compared the susceptibility of the LSSmScarlet2, LSSmScarlet3, and other LSSRFPs to the reagents used for whole-mount imaging, expansion microscopy, and immunostaining techniques. Due to higher pH stability and faster maturation, the LSSmScarlet3-LAMP3 fusion was 2.2-fold brighter than LSSmScarlet-LAMP3 in lysosomes of mammalian cells. The LSSmScarlet3-hLAMP2A fusion was similar in brightness to LSSmScarlet-hLAMP2A in lysosomes. We successfully applied the monomeric LSSmScarlet2 and LSSmScarlet3 proteins for confocal imaging of structural proteins in live mammalian cells. We also solved the X-ray structure of the LSSmScarlet2 protein at a resolution of 1.41 Å. Site-directed mutagenesis of the LSSmScarlet2 protein demonstrated the key role of the T74 residue in improving the pH and chemical stability of the LSSmScarlet2 protein. Full article
(This article belongs to the Special Issue Advanced Research in Fluorescent Proteins)
Show Figures

Figure 1

10 pages, 1686 KiB  
Article
Genetically Encoded Fluorescent Sensors for SARS-CoV-2 Papain-like Protease PLpro
by Elena L. Sokolinskaya, Lidia V. Putlyaeva, Vasilisa S. Polinovskaya and Konstantin A. Lukyanov
Int. J. Mol. Sci. 2022, 23(14), 7826; https://doi.org/10.3390/ijms23147826 - 15 Jul 2022
Cited by 7 | Viewed by 2857
Abstract
In the SARS-CoV-2 lifecycle, papain-like protease PLpro cuts off the non-structural proteins nsp1, nsp2, and nsp3 from a large polyprotein. This is the earliest viral enzymatic activity, which is crucial for all downstream steps. Here, we designed two genetically encoded fluorescent sensors for [...] Read more.
In the SARS-CoV-2 lifecycle, papain-like protease PLpro cuts off the non-structural proteins nsp1, nsp2, and nsp3 from a large polyprotein. This is the earliest viral enzymatic activity, which is crucial for all downstream steps. Here, we designed two genetically encoded fluorescent sensors for the real-time detection of PLpro activity in live cells. The first sensor was based on the Förster resonance energy transfer (FRET) between the red fluorescent protein mScarlet as a donor and the biliverdin-binding near-infrared fluorescent protein miRFP670 as an acceptor. A linker with the PLpro recognition site LKGG in between made this FRET pair sensitive to PLpro cleavage. Upon the co-expression of mScarlet-LKGG-miRFP670 and PLpro in HeLa cells, we observed a gradual increase in the donor fluorescence intensity of about 1.5-fold. In the second sensor, both PLpro and its target—green mNeonGreen and red mScarletI fluorescent proteins separated by an LKGG-containing linker—were attached to the endoplasmic reticulum (ER) membrane. Upon cleavage by PLpro, mScarletI diffused from the ER throughout the cell. About a two-fold increase in the nucleus/cytoplasm ratio was observed as a result of the PLpro action. We believe that the new PLpro sensors can potentially be used to detect the earliest stages of SARS-CoV-2 propagation in live cells as well as for the screening of PLpro inhibitors. Full article
(This article belongs to the Special Issue Advanced Research in Fluorescent Proteins)
Show Figures

Figure 1

12 pages, 3184 KiB  
Article
Evaluation of Antibiotic-Based Selection Methods for Camelina sativa Stable Transformants
by Abraham Ontiveros-Cisneros, Oliver Moss, Alex Van Moerkercke and Olivier Van Aken
Cells 2022, 11(7), 1068; https://doi.org/10.3390/cells11071068 - 22 Mar 2022
Cited by 5 | Viewed by 3990
Abstract
Camelina sativa (Camelina) is an oilseed crop that in recent years has gained importance due to its closeness to the plant model organism Arabidopsis thaliana (Arabidopsis), its low agronomical requirements, and the ability to grow under temperate conditions. To explore all the agronomical [...] Read more.
Camelina sativa (Camelina) is an oilseed crop that in recent years has gained importance due to its closeness to the plant model organism Arabidopsis thaliana (Arabidopsis), its low agronomical requirements, and the ability to grow under temperate conditions. To explore all the agronomical and biotechnological possibilities of this crop, it is important to evaluate the usability of the molecular procedures currently available for plants. One of the main tools for plant genetic modification and genetic studies is stable plant transformation. In the case of Arabidopsis, as well as Camelina, floral dipping is the easiest and most used method, which is followed by a selection for stable transformants. Commonly used selection methods for Camelina involve Discosoma sp. red protein (DsRed) fluorescence screening. However, many widely used plant transformation vector systems, for example those used in Arabidopsis and grasses, rely on antibiotic resistance selection. In this study, we evaluated the usability of different antibiotics including kanamycin (Kan), hygromycin (Hyg) and BASTA, and propose optimised protocols for selecting T1 and subsequent generation Camelina transformants, as well as crossing of Camelina lines expressing different transgenes. Finally, we also showed that overexpression of genes encoding enzymes from the seco-iridoid pathway of Catharanthus roseus using Hyg or BASTA-based expression constructs could be successfully achieved in Camelina, demonstrating the potential of these methods for metabolic engineering. Overall, in this study we show an efficient way to sterilize seeds, handle and perform selection of Camelina for use with transformation vectors designed for Arabidopsis thaliana. We also demonstrate a successful method to cross Camelina sativa and provide qRT-PCR results to prove its effectiveness. Full article
Show Figures

Figure 1

22 pages, 6716 KiB  
Article
The mRubyFT Protein, Genetically Encoded Blue-to-Red Fluorescent Timer
by Oksana M. Subach, Aleksandr Tashkeev, Anna V. Vlaskina, Dmitry E. Petrenko, Filipp A. Gaivoronskii, Alena Y. Nikolaeva, Olga I. Ivashkina, Konstantin V. Anokhin, Vladimir O. Popov, Konstantin M. Boyko and Fedor V. Subach
Int. J. Mol. Sci. 2022, 23(6), 3208; https://doi.org/10.3390/ijms23063208 - 16 Mar 2022
Cited by 6 | Viewed by 3934
Abstract
Genetically encoded monomeric blue-to-red fluorescent timers (mFTs) change their fluorescent color over time. mCherry-derived mFTs were used for the tracking of the protein age, visualization of the protein trafficking, and labeling of engram cells. However, the brightness of the blue and red forms [...] Read more.
Genetically encoded monomeric blue-to-red fluorescent timers (mFTs) change their fluorescent color over time. mCherry-derived mFTs were used for the tracking of the protein age, visualization of the protein trafficking, and labeling of engram cells. However, the brightness of the blue and red forms of mFTs are 2–3- and 5–7-fold dimmer compared to the brightness of the enhanced green fluorescent protein (EGFP). To address this limitation, we developed a blue-to-red fluorescent timer, named mRubyFT, derived from the bright mRuby2 red fluorescent protein. The blue form of mRubyFT reached its maximum at 5.7 h and completely transformed into the red form that had a maturation half-time of 15 h. Blue and red forms of purified mRubyFT were 4.1-fold brighter and 1.3-fold dimmer than the respective forms of the mCherry-derived Fast-FT timer in vitro. When expressed in mammalian cells, both forms of mRubyFT were 1.3-fold brighter than the respective forms of Fast-FT. The violet light-induced blue-to-red photoconversion was 4.2-fold less efficient in the case of mRubyFT timer compared to the same photoconversion of the Fast-FT timer. The timer behavior of mRubyFT was confirmed in mammalian cells. The monomeric properties of mRubyFT allowed the labeling and confocal imaging of cytoskeleton proteins in live mammalian cells. The X-ray structure of the red form of mRubyFT at 1.5 Å resolution was obtained and analyzed. The role of the residues from the chromophore surrounding was studied using site-directed mutagenesis. Full article
Show Figures

Figure 1

22 pages, 2981 KiB  
Article
Simultaneous Monitoring of pH and Chloride (Cl) in Brain Slices of Transgenic Mice
by Daria Ponomareva, Elena Petukhova and Piotr Bregestovski
Int. J. Mol. Sci. 2021, 22(24), 13601; https://doi.org/10.3390/ijms222413601 - 18 Dec 2021
Cited by 6 | Viewed by 3698
Abstract
Optosensorics is the direction of research possessing the possibility of non-invasive monitoring of the concentration of intracellular ions or activity of intracellular components using specific biosensors. In recent years, genetically encoded proteins have been used as effective optosensory means. These probes possess fluorophore [...] Read more.
Optosensorics is the direction of research possessing the possibility of non-invasive monitoring of the concentration of intracellular ions or activity of intracellular components using specific biosensors. In recent years, genetically encoded proteins have been used as effective optosensory means. These probes possess fluorophore groups capable of changing fluorescence when interacting with certain ions or molecules. For monitoring of intracellular concentrations of chloride ([Cl]i) and hydrogen ([H+] i) the construct, called ClopHensor, which consists of a H+- and Cl-sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a monomeric red fluorescent protein (mDsRed) has been proposed. We recently developed a line of transgenic mice expressing ClopHensor in neurons and obtained the map of its expression in different areas of the brain. The purpose of this study was to examine the effectiveness of transgenic mice expressing ClopHensor for estimation of [H+]i and [Cl]i concentrations in neurons of brain slices. We performed simultaneous monitoring of [H+]i and [Cl]i under different experimental conditions including changing of external concentrations of ions (Ca2+, Cl, K+, Na+) and synaptic stimulation of Shaffer’s collaterals of hippocampal slices. The results obtained illuminate different pathways of regulation of Cl and pH equilibrium in neurons and demonstrate that transgenic mice expressing ClopHensor represent a reliable tool for non-invasive simultaneous monitoring of intracellular Cl and pH. Full article
(This article belongs to the Special Issue Light-Controlled Modulation and Analysis of Neuronal Functions)
Show Figures

Figure 1

Back to TopTop