Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = gas-to-liquid floating production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7220 KB  
Article
Flotation Enrichment of Micro- and Nanosilica Formed During the Production of Silicon and Ferrosilicon
by Antonina I. Karlina, Yuliya I. Karlina and Vitaliy A. Gladkikh
Minerals 2024, 14(11), 1165; https://doi.org/10.3390/min14111165 - 17 Nov 2024
Viewed by 1264
Abstract
This paper presents the results of experiments conducted on the flotation separation of cyclone dust particles. The flotation process was conducted using a laboratory flotation apparatus comprising three chambers. Experimental tests supported theoretical results of the theoretical reasoning and justification for the choice [...] Read more.
This paper presents the results of experiments conducted on the flotation separation of cyclone dust particles. The flotation process was conducted using a laboratory flotation apparatus comprising three chambers. Experimental tests supported theoretical results of the theoretical reasoning and justification for the choice of parameters that the flotation process should have in order to extract particles of such small sizes. Furthermore, this work elucidates the concept of “nanobubbles” and substantiates their viability for use in the flotation of nanoparticles, given that bubbles of such a magnitude are firmly affixed to the hydrophobic surface of particles. Bubbles of a larger size than nanoparticles will float both hydrophobic and hydrophilic particles. The effective flotation of cyclone dust from the gas cleaning of silicon and ferroalloy production provided two materials as a result. The experiments yielded insights into the rational technological parameters of the flotation mode for obtaining new products. These insights were gleaned from the preliminary conditioning (conditioning time from 0.5 to 1.5 h) of wet cyclone dust (dry dust weight of 4 kg) with liquid glass (1.4 g per 1 dm3 of pulp) in a cavitation unit at a pH value of 8.5. The flotation process was conducted in a three-chamber flotation apparatus with a volume of 0.02 m3 for a duration of 90 min, utilizing a pneumohydraulic aerator with air suction from the atmosphere. In this instance, the pulp was conveyed via a pump at a pressure of 0.4 MPa from the initial cleansing chamber into the aerator. During the flotation process, kerosene (1 mg per 1 dm3 of pulp) and pine oil (2 mg per 1 dm3 of pulp) were added as additives. The resulting products were silicon dioxide (95%) and carbon nanoparticles (94%). Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 2520 KB  
Article
Bifunctional Hybrid FTS Catalyst Mixed with SAPO-34 Zeolite for Application in the GTL-FPSO Process
by Hyun Dong Kim, Hyun-tae Song, Jeong Min Seo, Ye-na Choi, Kwan-Young Lee and Dong Ju Moon
Catalysts 2023, 13(12), 1465; https://doi.org/10.3390/catal13121465 - 24 Nov 2023
Viewed by 2139
Abstract
The gas-to-liquid (GTL) process is a catalytic technology for achieving carbon neutrality during fuel production. Fischer–Tropsch synthesis (FTS), a core step in this process, converts synthesis gas (CO + H2) to high-value hydrocarbon products. This study synthesized a chabazite-shaped zeolite and [...] Read more.
The gas-to-liquid (GTL) process is a catalytic technology for achieving carbon neutrality during fuel production. Fischer–Tropsch synthesis (FTS), a core step in this process, converts synthesis gas (CO + H2) to high-value hydrocarbon products. This study synthesized a chabazite-shaped zeolite and a Co/γ-alumina catalyst by using conventional hydrothermal and wet impregnation methods, respectively. Hybrid FTS catalysts were then prepared by mixing the Co/γ-alumina catalyst with supports, including the synthesized and commercial zeolites alone and mixed at various ratios. The effects of these zeolites on the FTS conversion and selectivity were investigated. Additionally, the physicochemical properties of the supports and prepared catalysts were analyzed. The bifunctional hybrid catalyst performance was evaluated in a fixed-bed reactor, and the FTS products were analyzed using online and offline gas chromatography. The hybrid catalysts produced lighter hydrocarbons than the Co/γ-alumina catalyst alone. Meanwhile, heavy hydrocarbons produced over the Co/γ-alumina catalyst were hydrocracked at the acid sites of the silicoaluminophosphate zeolite (SAPO-34) to yield lighter, fuel-range hydrocarbons. Cobalt-based hybrid FTS catalysts were also investigated to determine the optimum support ratio for high carbon conversion and C5+ selectivity. The hybrid catalyst supported on SAPO-34:ZSM-5 (2:8) exhibited the highest CO conversion and favorable C5+ selectivity. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

15 pages, 1499 KB  
Article
Investigation of the Process of Simple Distillation in Irrigated Pipe Elements
by Artem Sergeevich Ponikarov, Sergey Ivanovich Ponikarov and Eduard Vladislavovich Osipov
Processes 2021, 9(11), 2047; https://doi.org/10.3390/pr9112047 - 16 Nov 2021
Cited by 10 | Viewed by 7201
Abstract
In modern chemical and oil refining complexes, separation processes are among the most popular and energy-intensive. Installations for their implementation should be equipped with nodes for creating vapor (evaporators) and liquid (deflegmators) irrigation. Evaporators of any type (film, thermosiphon, gas lift, cubic) belong [...] Read more.
In modern chemical and oil refining complexes, separation processes are among the most popular and energy-intensive. Installations for their implementation should be equipped with nodes for creating vapor (evaporators) and liquid (deflegmators) irrigation. Evaporators of any type (film, thermosiphon, gas lift, cubic) belong to this class of devices. For example, in cubic evaporators, the gas flow is completely formed from flux bubbles that originate on the heat-conducting surface and float in the volume of the cubic liquid located in the apparatus. Due to the accompanying mass exchange, the bubbles are enriched with volatile components during ascent and noticeably increase in volume, and the growth of the bubble is determined, among other things, by the total flow. At the same time, in real bubbling-type equipment, the total mass transfer surface exceeds the cross-section of the device itself by more than two orders of magnitude. Thus, according to, the ratio of the internal cross-sectional area of the apparatus to the developed mass transfer surface is 0.0015–0.002. Based on the analysis of the integral equation of the diffusion boundary layer, it is shown that the presence of a resultant flow of substance through the phase interface (non-equimolarity of the process) in a two-phase gas (vapor)–liquid system leads to the transformation of the structure of the traditional mass transfer equation itself. The use of a new structure obtained for both binary and multicomponent mixtures makes it possible to significantly simplify the approach to the description and generalization of arbitrary mass transfer processes. The innovativeness of the proposed approach lies in its universality for non-equimolar processes. This simplifies the creation of models of any mass transfer devices and entire production lines. In addition, the proposed approach is a good auxiliary tool for various researchers and experimenters. It should also be noted that the separation processes of many products of organic origin during heating are characterized by the appearance of undesirable side reactions (thermal decomposition, condensation, polycondensation, formation of harmful impurities, etc.), which occur most intensively in the heating zones. At the same time, the evaporation and distillation units are subject to requirements for the minimum hydraulic resistance of the structure, the maximum separation capacity (efficiency), and the minimum residence time of the product in the apparatus (equivalent to the minimum holding capacity of the structure). It was noted that the specified requirements are most fully met by film-type devices. Full article
(This article belongs to the Topic Modern Technologies and Manufacturing Systems)
Show Figures

Figure 1

14 pages, 2428 KB  
Article
Floating Membrane Bioreactors with High Gas Hold-Up for Syngas-to-Biomethane Conversion
by Konstantinos Chandolias, Enise Pekgenc and Mohammad J. Taherzadeh
Energies 2019, 12(6), 1046; https://doi.org/10.3390/en12061046 - 18 Mar 2019
Cited by 16 | Viewed by 5606
Abstract
The low gas-to-liquid mass transfer rate is one of the main challenges in syngas biomethanation. In this work, a new concept of the floating membrane system with high gas hold-up was introduced in order to enhance the mass transfer rate of the process. [...] Read more.
The low gas-to-liquid mass transfer rate is one of the main challenges in syngas biomethanation. In this work, a new concept of the floating membrane system with high gas hold-up was introduced in order to enhance the mass transfer rate of the process. In addition, the effect of the inoculum-to-syngas ratio was investigated. The experiments were conducted at 55 °C with an anaerobic mixed culture in both batch and continuous modes. According to the results from the continuous experiments, the H2 and CO conversion rates in the floating membrane bioreactor were approximately 38% and 28% higher in comparison to the free (suspended) cell bioreactors. The doubling of the thickness of the membrane bed resulted in an increase of the conversion rates of H2 and CO by approximately 6% and 12%, respectively. The highest H2 and CO consumption rates and CH4 production rate recorded were approximately 22 mmol/(L·d), 50 mmol/(L·d), and 34.41 mmol/(L·d), respectively, obtained at the highest inoculum-to-syngas ratio of 0.2 g/mL. To conclude, the use of the floating membrane system enhanced the syngas biomethanation rates, while a thicker membrane bed resulted in even higher syngas conversion rates. Moreover, the increase of the inoculum-to-syngas ratio of up to 0.2 g/mL favored the syngas conversion. Full article
(This article belongs to the Collection Bioenergy and Biofuel)
Show Figures

Figure 1

Back to TopTop