Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = gas-liquid-foam three-phase flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5293 KB  
Article
Computational Fluid Dynamics Study on Bottom-Hole Multiphase Flow Fields Formed by Polycrystalline Diamond Compact Drill Bits in Foam Drilling
by Lihong Wei and Jaime Honra
Fluids 2024, 9(9), 211; https://doi.org/10.3390/fluids9090211 - 10 Sep 2024
Cited by 1 | Viewed by 1358
Abstract
High-temperature geothermal wells frequently employ foam drilling fluids and Polycrystalline Diamond Compact (PDC) drill bits. Understanding the bottom-hole flow field of PDC drill bits in foam drilling is essential for accurately analyzing their hydraulic structure design. Based on computational fluid dynamics (CFD) and [...] Read more.
High-temperature geothermal wells frequently employ foam drilling fluids and Polycrystalline Diamond Compact (PDC) drill bits. Understanding the bottom-hole flow field of PDC drill bits in foam drilling is essential for accurately analyzing their hydraulic structure design. Based on computational fluid dynamics (CFD) and multiphase flow theory, this paper establishes a numerical simulation technique for gas-liquid-solid multiphase flow in foam drilling with PDC drill bits, combined with a qualitative and quantitative hydraulic structure evaluation method. This method is applied to simulate the bottom-hole flow field of a six-blade PDC drill bit. The results show that the flow velocity of the air phase in foam drilling fluid is generally higher than that of the water phase. Some blades’ cutting teeth exhibit poor cleaning and cooling effects, with individual cutting teeth showing signs of erosion damage and cuttings cross-flow between channels. To address these issues, optimizing the nozzle spray angle and channel design is necessary to improve hydraulic energy distribution, enhance drilling efficiency, and extend drill bit life. This study provides new ideas and methods for developing geothermal drilling technology in the numerical simulation of a gas-liquid-solid three-phase flow field. Additionally, the combined qualitative and quantitative evaluation method offers new insights and approaches for research and practice in drilling engineering. Full article
(This article belongs to the Special Issue Multiphase Flow and Granular Mechanics)
Show Figures

Figure 1

14 pages, 5780 KB  
Article
Numerical Study of the Effects of Surface Tension and Initial Volume Fraction on Gas-Liquid-Foam Three-Phase Flow Separation Process
by TianTian Tan, Jiaqing Zhang, Junjie Hu, Jianghong Zhang, Gang Sun, Bo Li and Yi Guo
Fire 2023, 6(3), 117; https://doi.org/10.3390/fire6030117 - 13 Mar 2023
Cited by 1 | Viewed by 2164
Abstract
Since it is low in cost and low in toxicity and has good biodegradability, gas-liquid-foam three-phase flow has been widely used in industrial fire protection. Due to the different characteristics of gas, liquid, and foam, liquid precipitation is liable to occur under static [...] Read more.
Since it is low in cost and low in toxicity and has good biodegradability, gas-liquid-foam three-phase flow has been widely used in industrial fire protection. Due to the different characteristics of gas, liquid, and foam, liquid precipitation is liable to occur under static conditions, resulting in unstable performance of the mixture. To improve fire extinguishing efficiency, it is of great significance to study the separation process of gas-liquid-foam. In the present study, the effects of the surface tension (range from 0.04 to 0.07) and initial liquid volume fraction (range from 0.2 to 0.5) on the gas-liquid-foam separation process are investigated with the numerical tool Fluent. The liquid volume fraction is mainly influenced by two inverse effects: (a) the transformation of liquid into foam, and (b) the liquid drainage and bursting of foam. In the separation process, the volume fraction of small foam decreases monotonically while the volume fraction of medium and large foam increases slightly. Since the volume fraction of small foam is much greater than medium and large foam and its bursting process is dominant, the liquid volume fraction presents a monotonic increasing trend. The volume of the separated liquid increases almost linearly with time at various surface tensions and initial volume fractions, and the increase rate is about 0.004. In the range of the surface tension examined, the separation process is insensitive to the surface tension, resulting in almost the same drainage time. On the other hand, the separation process depends on the initial liquid volume fraction non-monotonically; namely, when the initial volume fraction is small, with the increase of the initial volume fraction, the liquid is more easily separated from the mixture, and when the initial volume fraction is over a critical value (about 0.4), the separation process is decelerated. Full article
(This article belongs to the Special Issue Fire Numerical Simulation)
Show Figures

Figure 1

19 pages, 1351 KB  
Article
Volume-of-Fluid Based Finite-Volume Computational Simulations of Three-Phase Nanoparticle-Liquid-Gas Boiling Problems in Vertical Rectangular Channels
by Anele Mavi and Tiri Chinyoka
Energies 2022, 15(15), 5746; https://doi.org/10.3390/en15155746 - 8 Aug 2022
Cited by 7 | Viewed by 2788
Abstract
This study develops robust numerical algorithms for the simulation of three-phase (solid-liquid-gas) boiling and bubble formation problems in rectangular channels. The numerical algorithms are based on the Finite Volume Methods (FVM) and implement both the volume-of-fluid (VOF) methods for liquid-gas interface tracking as [...] Read more.
This study develops robust numerical algorithms for the simulation of three-phase (solid-liquid-gas) boiling and bubble formation problems in rectangular channels. The numerical algorithms are based on the Finite Volume Methods (FVM) and implement both the volume-of-fluid (VOF) methods for liquid-gas interface tracking as well as the volume-fraction methods to account for the concentration of embedded solid nano-particles in the liquid phase. Water is used as the base-liquid and the solid phase is modelled via metallic nano-particles (both aluminium oxide and titanium oxide nano-particles are considered) that are homogeneously mixed within the liquid phase. The gas phase is considered as a vapour arising from the bolling processes of the liquid-phase. The finite volume methodology is implemented on the OpenFOAM software platform, specifically by careful modification and manipulation of existing OpenFOAM solvers. The governing fluid dynamical equations, for the three-phase boiling problem, take into account the thermal conductivity effects of the solid (nano-particle), the momentum and energy equations for both the liquid-phase and the gas-phase, and finally the decoupled mass conservation equations for the liquid- and gas- phases. The decoupled mass conservation equations are specifically used to model the phase change between the liquid- and gas- phases. In addition to the FVM and VOF numerical methodologies for the discretization of the governing equations, the pressure-velocity coupling is resolved via the PIMPLE algorithm, a combination of the Pressure Implicit with Splitting of Operator (PISO) and the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithms. The computational results are presented graphically with respect to variations in time as well as in the nano-particle volume fractions. The simulations and results accurately capture the formation of vapour bubbles in the two-phase (particle-free) liquid-gas flow and additionally the computational algorithms are similarly demonstrated to accurately illustrate and capture simulated boiling processes. The presence of the nano-particles is demonstrated to enhance the heat-transfer, boiling, and bubble formation processes. Full article
(This article belongs to the Special Issue Recent Advances in Heat Transfer and Two-Phase Flow Performance)
Show Figures

Figure 1

22 pages, 40868 KB  
Article
Void Fraction Prediction Method in Gas–Liquid Flow through Channel Packed with Open-Cell Metal Foams
by Małgorzata Płaczek and Roman Dyga
Energies 2021, 14(9), 2645; https://doi.org/10.3390/en14092645 - 5 May 2021
Cited by 3 | Viewed by 3096
Abstract
This paper reports the results of a study concerned with air–water and air–oil two-phase flow in channels packed with open-cell metal foams. The research was conducted in horizontal channel with an internal diameter of 0.02 m and length of 2.61 m. The analysis [...] Read more.
This paper reports the results of a study concerned with air–water and air–oil two-phase flow in channels packed with open-cell metal foams. The research was conducted in horizontal channel with an internal diameter of 0.02 m and length of 2.61 m. The analysis applied three metal foams with pore density 20, 30, and 40 PPI and porosity typical for industrial applications, changing in the range of 92–94%. The experimental data were used to develop a new method for predicting void fraction in two-phase gas–liquid flow in channels packed with metal foams. A new gas void fraction calculating method based on drift-flux model was developed. This model gives a correct representation of changes in the gas void fraction value and good prediction accuracy. The average relative error in calculating the air void fraction in two-phase flow is less than 13%, and 86% of experimental points is characterized by an error less than 20%. Full article
(This article belongs to the Special Issue Multiphase Flows)
Show Figures

Figure 1

26 pages, 12033 KB  
Article
Pressure Drops in Two-Phase Gas–Liquid Flow through Channels Filled with Open-Cell Metal Foams
by Roman Dyga and Sebastian Brol
Energies 2021, 14(9), 2419; https://doi.org/10.3390/en14092419 - 23 Apr 2021
Cited by 10 | Viewed by 3414
Abstract
This paper describes experimental investigations of single-phase and two-phase gas–liquid flow through channels with a diameter of 20 mm and length of 2690 mm, filled with metal foams. Three types of aluminium foams with pore densities of 20, 30 and 40 PPI and [...] Read more.
This paper describes experimental investigations of single-phase and two-phase gas–liquid flow through channels with a diameter of 20 mm and length of 2690 mm, filled with metal foams. Three types of aluminium foams with pore densities of 20, 30 and 40 PPI and porosities ranging from 29.9% to 94.3% were used. Air, water and oil were pumped through the foams. The tests covered laminar, transitional and turbulent flow. We demonstrated that the Reynolds number, in which the hydraulic dimension should be defined based on foam porosity and pore diameter de = ϕdp/(1 − ϕ), can be used as a flow regime assessment criterion. It has been found that fluid pressure drops when flowing through metal foams significantly depends on the cell size and porosity of the foam, as well as the shape of the foam skeleton. The flow patterns had a significant influence on the pressure drop. Among other things, we observed a smaller pressure drop when plug flow changed to stratified flow. We developed a model to describe pressure drop in flow through metal foams. As per the proposed methodology, pressure drop in single-phase flow should be determined based on the friction factor, taking into account the geometrical parameters of the foams. We propose to calculate pressure drop in gas–liquid flow as the sum of pressure drops in gas and liquid pressure drop corrected by the drop amplification factor. Full article
(This article belongs to the Special Issue Multiphase Flows)
Show Figures

Figure 1

14 pages, 4580 KB  
Article
Influence of Hydrodynamic Conditions on the Type and Area of Occurrence of Gas–Liquid Flow Patterns in the Flow through Open–Cell Foams
by Roman Dyga and Małgorzata Płaczek
Materials 2020, 13(15), 3254; https://doi.org/10.3390/ma13153254 - 22 Jul 2020
Cited by 11 | Viewed by 2030
Abstract
This paper reports the results of a study concerned with air−water and air−oil two–phase flow pattern analysis in the channels with open–cell metal foams. The research was conducted in a horizontal channel with an internal diameter of 0.02 m and length of 2.61 [...] Read more.
This paper reports the results of a study concerned with air−water and air−oil two–phase flow pattern analysis in the channels with open–cell metal foams. The research was conducted in a horizontal channel with an internal diameter of 0.02 m and length of 2.61 m. The analysis applied three foams with pore density equal to 20, 30 and 40 PPI (pore per inch) with porosity, typical for industrial applications, changing in the range of 92%–94%. Plug flow, slug flow, stratified flow and annular flow were observed over the ranges of gas and liquid superficial velocities of 0.031–8.840 m/s and 0.006–0.119 m/s, respectively. Churn flow, which has not yet been observed in the flow through the open–cell foams, was also recorded. The type of flow patterns is primarily affected by the hydrodynamic characteristics of the flow, including fluid properties, but not by the geometric parameters of foams. Flow patterns in the channels packed with metal foams occur in different conditions from the ones recorded for empty channels so gas−liquid flow maps developed for empty channels cannot be used to predict analyzed flows. A new gas−liquid flow pattern map for a channel packed with metal foams with the porosity of 0.92–0.94 was developed. The map is valid for liquids with a density equal to or lower than the density of water and a viscosity several times greater than that of water. Full article
(This article belongs to the Special Issue Advanced and High Performance Metallic Foams)
Show Figures

Figure 1

20 pages, 1676 KB  
Article
Numerical Simulations of Sloshing and the Thermodynamic Response Due to Mixing
by Erlend Liavåg Grotle and Vilmar Æsøy
Energies 2017, 10(9), 1338; https://doi.org/10.3390/en10091338 - 5 Sep 2017
Cited by 28 | Viewed by 5437
Abstract
In this paper, we apply computational fluid dynamics (CFD) to study the thermodynamic response enhanced by sloshing inside liquefied natural gas (LNG) fuel tanks. An existing numerical solver provided by OpenFOAM is used to simulate sloshing in a model scaled tank of similar [...] Read more.
In this paper, we apply computational fluid dynamics (CFD) to study the thermodynamic response enhanced by sloshing inside liquefied natural gas (LNG) fuel tanks. An existing numerical solver provided by OpenFOAM is used to simulate sloshing in a model scaled tank of similar form to an LNG fuel tank. The interface area has been estimated for different sloshing regimes on three different numerical grids representing the tank in 3D. Estimating the interface area is done by performing a grid-independence study. In the most severe sloshing conditions, convergence is not achieved. By combining the results from experiments and CFD, it is found that the interface area and the condensation mass flow rate are in phase for the most severe sloshing condition. The existing CFD solver is modified to determine the pressure drop. The simulation results are compared to the experimental data, and the results are acceptable and thereby show a potential in applying CFD to predict the thermodynamic response due to sloshing. By plotting the temperature contours, indications are found that the exchange of cold bulk and saturated liquid due to sloshing has a significant influence on the thermodynamic response. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Graphical abstract

Back to TopTop