Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = functional poly-p-xylylene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4836 KB  
Article
Parylene C as a Multipurpose Material for Electronics and Microfluidics
by Beatriz J. Coelho, Joana V. Pinto, Jorge Martins, Ana Rovisco, Pedro Barquinha, Elvira Fortunato, Pedro V. Baptista, Rodrigo Martins and Rui Igreja
Polymers 2023, 15(10), 2277; https://doi.org/10.3390/polym15102277 - 12 May 2023
Cited by 31 | Viewed by 12755
Abstract
Poly(p-xylylene) derivatives, widely known as Parylenes, have been considerably adopted by the scientific community for several applications, ranging from simple passive coatings to active device components. Here, we explore the thermal, structural, and electrical properties of Parylene C, and further present a variety [...] Read more.
Poly(p-xylylene) derivatives, widely known as Parylenes, have been considerably adopted by the scientific community for several applications, ranging from simple passive coatings to active device components. Here, we explore the thermal, structural, and electrical properties of Parylene C, and further present a variety of electronic devices featuring this polymer: transistors, capacitors, and digital microfluidic (DMF) devices. We evaluate transistors produced with Parylene C as a dielectric, substrate, and encapsulation layer, either semitransparent or fully transparent. Such transistors exhibit steep transfer curves and subthreshold slopes of 0.26 V/dec, negligible gate leak currents, and fair mobilities. Furthermore, we characterize MIM (metal–insulator–metal) structures with Parylene C as a dielectric and demonstrate the functionality of the polymer deposited in single and double layers under temperature and AC signal stimuli, mimicking the DMF stimuli. Applying temperature generally leads to a decrease in the capacitance of the dielectric layer, whereas applying an AC signal leads to an increase in said capacitance for double-layered Parylene C only. By applying the two stimuli, the capacitance seems to suffer from a balanced influence of both the separated stimuli. Lastly, we demonstrate that DMF devices with double-layered Parylene C allow for faster droplet motion and enable long nucleic acid amplification reactions. Full article
Show Figures

Graphical abstract

10 pages, 3769 KB  
Article
Fabrication of Low-Fouling Surfaces on Alkyne-Functionalized Poly-(p-xylylenes) Using Click Chemistry
by Pei-Ju Chen, Hsien-Yeh Chen and Wei-Bor Tsai
Polymers 2022, 14(2), 225; https://doi.org/10.3390/polym14020225 - 6 Jan 2022
Cited by 5 | Viewed by 2673
Abstract
A facial, versatile, and universal method that breaks the substrate limits is desirable for antifouling treatment. Thin films of functional poly-p-xylylenes (PPX) that are deposited using chemical vapor deposition (CVD) provide a powerful platform for surface immobilization of molecules. In this study, we [...] Read more.
A facial, versatile, and universal method that breaks the substrate limits is desirable for antifouling treatment. Thin films of functional poly-p-xylylenes (PPX) that are deposited using chemical vapor deposition (CVD) provide a powerful platform for surface immobilization of molecules. In this study, we prepared an alkyne-functionalized PPX coating on which poly (sulfobetaine methacrylate-co-Az) could be conjugated via click chemistry. We found that the conjugated polymers were very stable and inhibited cell adhesion and protein adsorption effectively. The same conjugation strategy could also be applied to conjugate azide-containing poly (ethylene glycol) and poly (NIPAAm). The results indicate that our method provides a simple and robust tool for fabricating antifouling surfaces on a wide range of substrates using CVD technology of functionalized poly (p-xylylenes) for biosensor, diagnostics, immunoassay, and other biomaterial applications. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Anti-fouling Applications)
Show Figures

Figure 1

15 pages, 11175 KB  
Article
Guiding Stem Cell Differentiation and Proliferation Activities Based on Nanometer-Thick Functionalized Poly-p-xylylene Coatings
by Chih-Yu Wu, Yu-Chih Chiang, Jane Christy, Abel Po-Hao Huang, Nai-Yun Chang, Wenny, Yu-Chih Chiu, Yen-Ching Yang, Po-Chun Chen, Peng-Yuan Wang and Hsien-Yeh Chen
Coatings 2021, 11(5), 582; https://doi.org/10.3390/coatings11050582 - 17 May 2021
Cited by 1 | Viewed by 3309
Abstract
Modifications of biomaterials based on the combination of physical, chemical, and biological cues for manipulating stem cell growth are needed for modern regenerative medicine. The exploitation of these sophisticated modifications remains a challenge, including substrate limitation, biocompatibility, and versatile and general cues for [...] Read more.
Modifications of biomaterials based on the combination of physical, chemical, and biological cues for manipulating stem cell growth are needed for modern regenerative medicine. The exploitation of these sophisticated modifications remains a challenge, including substrate limitation, biocompatibility, and versatile and general cues for stem cell activities. In this report, a vapor-phase coating technique based on the functionalization of poly-p-xylylene (PPX) was used to generate a surface modification for use with stem cells in culture. The coating provided the ability for covalent conjugation that immobilized bone morphogenetic protein 2 (BMP-2) and fibroblast growth factor 2 (FGF-2), and the modified coating surfaces enabled direct stem cell differentiation and controlled proliferation because of the specific activities. The ligations were realized between the growth factors and the maleimide-modified surface, and the conjugation reactions proceeded with high specificity and rapid kinetics under mild conditions. The conjugation densities were approximately 140 ng·cm−2 for BMP-2 and 155 ng·cm−2 for FGF-2. Guiding the activities of the human adipose-derived stem cells (hADSCs) was achieved by modifying surfaces to promote the hADSC differentiation capacity and proliferation rate. The reported coating system demonstrated biocompatibility, substrate-independent conformity, and stability, and it could provide an effective and versatile interface platform for further use in biomedical applications. Full article
(This article belongs to the Special Issue Biointerface Coatings for Biomaterials and Biomedical Applications II)
Show Figures

Graphical abstract

12 pages, 3686 KB  
Article
Vapor-Phase Fabrication of a Maleimide-Functionalized Poly-p-xylylene with a Three-Dimensional Structure
by Shu-Man Hu, Chin-Yun Lee, Yu-Ming Chang, Jia-Qi Xiao, Tatsuya Kusanagi, Ting-Ying Wu, Nai-Yun Chang, Jane Christy, Ya-Ru Chiu, Chao-Wei Huang, Yen-Ching Yang, Yu-Chih Chiang and Hsien-Yeh Chen
Coatings 2021, 11(4), 466; https://doi.org/10.3390/coatings11040466 - 16 Apr 2021
Cited by 3 | Viewed by 3415
Abstract
A vapor-phase process, involving the sublimation of an ice substrate/template and the vapor deposition of a maleimide-functionalized poly-p-xylylene, has been reported to synthesize an advanced porous material, with readily clickable chemical interface properties, to perform a Michael-type addition of a maleimide [...] Read more.
A vapor-phase process, involving the sublimation of an ice substrate/template and the vapor deposition of a maleimide-functionalized poly-p-xylylene, has been reported to synthesize an advanced porous material, with readily clickable chemical interface properties, to perform a Michael-type addition of a maleimide functionality for conjugation with a thiol group. In contrast to the conventional chemical vapor deposition of poly-p-xylylenes on a solid surface that forms thin film coatings, the process reported herein additionally results in deposition on a dynamic and sublimating ice surface (template), rendering the construction of a three-dimensional, porous, maleimide-functionalized poly-p-xylylene. The process seamlessly exploits the refined chemical vapor deposition polymerization from maleimide-substituted [2,2]paracyclophane and ensures the preservation and transformation of the maleimide functionality to the final porous poly-p-xylylene products. The functionalization and production of a porous maleimide-functionalized poly-p-xylylene were completed in a single step, thus avoiding complicated steps or post-functionalization procedures that are commonly seen in conventional approaches to produce functional materials. More importantly, the equipped maleimide functionality provides a rapid and efficient route for click conjugation toward thiol-terminated molecules, and the reaction can be performed under mild conditions at room temperature in a water solution without the need for a catalyst, an initiator, or other energy sources. The introduced vapor-based process enables a straightforward synthesis approach to produce not only a pore-forming structure of a three-dimensional material, but also an in situ-derived maleimide functional group, to conduct a covalent click reaction with thiol-terminal molecules, which are abundant in biological environments. These advanced materials are expected to have a wide variety of new applications. Full article
(This article belongs to the Special Issue Biointerface Coatings for Biomaterials and Biomedical Applications II)
Show Figures

Graphical abstract

11 pages, 24411 KB  
Article
Vapor Sublimation and Deposition to Fabricate a Porous Methyl Propiolate-Functionalized Poly-p-xylylene Material for Copper-Free Click Chemistry
by Chin-Yun Lee, Shu-Man Hu, Jia-Qi Xiao, Yu-Ming Chang, Tatsuya Kusanagi, Ting-Ying Wu, Ya-Ru Chiu, Yen-Ching Yang, Chao-Wei Huang and Hsien-Yeh Chen
Polymers 2021, 13(5), 786; https://doi.org/10.3390/polym13050786 - 4 Mar 2021
Cited by 2 | Viewed by 3704
Abstract
Conventional porous materials are mostly synthesized in solution-based methods involving solvents and initiators, and the functionalization of these porous materials usually requires additional and complex steps. In the current study, a methyl propiolate-functionalized porous poly-p-xylylene material was fabricated based on a [...] Read more.
Conventional porous materials are mostly synthesized in solution-based methods involving solvents and initiators, and the functionalization of these porous materials usually requires additional and complex steps. In the current study, a methyl propiolate-functionalized porous poly-p-xylylene material was fabricated based on a unique vapor sublimation and deposition process. The process used a water solution and ice as the template with a customizable shape and dimensions, and the conventional chemical vapor deposition (CVD) polymerization of poly-p-xylylene on such an ice template formed a three-dimensional, porous poly-p-xylylene material with interconnected porous structures. More importantly, the functionality of methyl propiolate was well preserved by using methyl propiolate-substituted [2,2]-paracyclophane during the vapor deposition polymerization process and was installed in one step on the final porous poly-p-xylylene products. This functionality exhibited an intact structure and reactivity during the proposed vapor sublimation and deposition process and was proven to have no decomposition or side products after further characterization and conjugation experiments. The electron-withdrawing methyl propiolate group readily provided efficient alkynes as click azide-terminated molecules under copper-free and mild conditions at room temperature and in environmentally friendly solvents, such as water. The resulting methyl propiolate-functionalized porous poly-p-xylylene exhibited interface properties with clickable specific covalent attachment toward azide-terminated target molecules, which are widely available for drugs and biomolecules. The fabricated functional porous materials represent an advanced material featuring porous structures, a straightforward synthetic approach, and precise and controlled interface click chemistry, rendering long-term stability and efficacy to conjugate target functionalities that are expected to attract a variety of new applications. Full article
(This article belongs to the Special Issue Polymeric Colloidal Materials for Biomedical Applications II)
Show Figures

Figure 1

12 pages, 3455 KB  
Article
Synergistic and Regulatable Bioremediation Capsules Fabrication Based on Vapor-Phased Encapsulation of Bacillus Bacteria and its Regulator by Poly-p-Xylylene
by Yen-Ching Yang, Wei-Shen Huang, Shu-Man Hu, Chao-Wei Huang, Chih-Hao Chiu and Hsien-Yeh Chen
Polymers 2021, 13(1), 41; https://doi.org/10.3390/polym13010041 - 24 Dec 2020
Cited by 6 | Viewed by 3526
Abstract
A regulatable bioremediation capsule material was synthesized with isolated single-strain bacteria (Bacillus species, B. CMC1) and a regulator molecule (carboxymethyl cellulose, CMC) by a vapor-phased encapsulation method with simple steps of water sublimation and poly-p-xylylene deposition in chemical vapor [...] Read more.
A regulatable bioremediation capsule material was synthesized with isolated single-strain bacteria (Bacillus species, B. CMC1) and a regulator molecule (carboxymethyl cellulose, CMC) by a vapor-phased encapsulation method with simple steps of water sublimation and poly-p-xylylene deposition in chemical vapor deposition (CVD) process. Mechanically, the capsule construct exhibited a controllable shape and dimensions, and was composed of highly biocompatible poly-p-xylylene as the matrix with homogeneously distributed bacteria and CMC molecules. Versatility of the encapsulation of the molecules at the desired concentrations was achieved in the vapor-phased sublimation and deposition fabrication process. The discovery of the fabricated capsule revealed that viable living B. CMC1 inhabited the capsule, and the capsule enhanced bacterial growth due to the materials and process used. Biologically, the encapsulated B. CMC1 demonstrated viable and functional enzyme activity for cellulase activation, and such activity was regulatable and proportional to the concentration of the decorated CMC molecules in the same capsule construct. Impressively, 13% of cellulase activity increase was realized by encapsulation of B. CMC1 by poly-p-xylylene, and a further 34% of cellulase activity increase was achieved by encapsulation of additional 2.5% CMC. Accordingly, this synergistic effectiveness of the capsule constructs was established by combining enzymatic B. CMC1 bacteria and its regulatory CMC by poly-p-xylylene encapsulation process. This reported encapsulation process exhibited other advantages, including the use of simple steps and a dry and clean process free of harmful chemicals; most importantly, the process is scalable for mass production. The present study represents a novel method to fabricate bacteria-encapsulated capsule for cellulose degradation in bioremediation that can be used in various applications, such as wastewater treatment and transforming of cellulose into glucose for biofuel production. Moreover, the concept of this vapor-phased encapsulation technology can be correspondingly used to encapsulate multiple bacteria and regulators to enhance the specific enzyme functions for degradation of various organic matters. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites II)
Show Figures

Figure 1

10 pages, 1693 KB  
Article
Vapor-Deposited Reactive Coating with Chemically and Topographically Erasable Properties
by Yu-Chih Chiang, Cuei-Ping Ho, Yin-Lin Wang, Po-Chun Chen, Peng-Yuan Wang and Hsien-Yeh Chen
Polymers 2019, 11(10), 1595; https://doi.org/10.3390/polym11101595 - 29 Sep 2019
Cited by 7 | Viewed by 3034
Abstract
An erasable coating was prepared to modify material surfaces with accessibilities, including specific conjugation, elimination of the conjugated chemistry/function, and the reactivation of a second new chemistry/function. The coating was realized based on a vapor-deposited functional poly-p-xylylene coating composed of an [...] Read more.
An erasable coating was prepared to modify material surfaces with accessibilities, including specific conjugation, elimination of the conjugated chemistry/function, and the reactivation of a second new chemistry/function. The coating was realized based on a vapor-deposited functional poly-p-xylylene coating composed of an integrated 3-((3-methylamido)-disulfanyl)propanoic acid functional group, resulting in not only chemical reactivity, but also a disulfide interchange mechanism. Mechanically, the coating was robust in terms of the thermal stability and adhesive property on a variety of substrate materials. Chemically, the anchoring site of carboxylic acid was accessible for specific conjugation, and a disulfide bridge moiety was used to disengage already installed functions/properties. In addition, the homogeneous nature of the vapor-phased coating technique is known for its morphology/thickness and distribution of the functional moiety, which allowed precision to address the installation or erasure of functions and properties. Characterization of the precisely confined hydrophilic/hydrophobic wetting property and the alternating reversibility of this wetting property on the same surface was achieved. Full article
(This article belongs to the Special Issue Polymeric Colloidal Materials for Biomedical Applications)
Show Figures

Graphical abstract

Back to TopTop