Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = fruit tree phytoplasma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 7987 KiB  
Article
Detection and Identification of Diverse Phytoplasmas in Declining Persimmon Plants
by Seyyed Alireza Esmaeilzadeh-Hosseini, Ghobad Babaei, Sri Tej Mateeti, Francesco Pacini and Assunta Bertaccini
Microorganisms 2025, 13(3), 645; https://doi.org/10.3390/microorganisms13030645 - 12 Mar 2025
Cited by 1 | Viewed by 585
Abstract
Persimmon (Diospyros kaki) plants showing yellowing, reddening, die-back, and decline symptoms were observed in Mehriz (Yazd province), Iran. Total DNAs, extracted from samples collected from symptomatic and symptomless plants, were subjected to direct and nested PCR, amplifying the 16S rRNA gene [...] Read more.
Persimmon (Diospyros kaki) plants showing yellowing, reddening, die-back, and decline symptoms were observed in Mehriz (Yazd province), Iran. Total DNAs, extracted from samples collected from symptomatic and symptomless plants, were subjected to direct and nested PCR, amplifying the 16S rRNA gene of phytoplasmas using specific primer pairs. PCR amplicons of expected lengths were obtained, mainly from nested PCR, and only from samples collected from symptomatic plants. Real and virtual RFLP, phylogenetic, and DNA identity analyses of the partial 16S rRNA gene sequences suggested the presence of diverse phytoplasmas in the analyzed samples. The identified phytoplasmas were referable to ‘Candidatus Phytoplasma omanense’ (16SrXXIX group) and ‘Ca. P. australasiae = australasiaticum’ (16SrII-D subgroup). The results of the sampling and testing highlight the urgent need for an accurate survey to verify the presence and identity of phytoplasmas in symptomatic fruit trees in Iran, in order to be able to plan appropriate management strategies. Further investigations of the possible role of ‘Ca. P. omanense’ strains as an emerging threat to fruit orchards in Iran should also be performed. Full article
(This article belongs to the Special Issue Phytoplasma Diseases of Trees and Shrubs)
Show Figures

Figure 1

25 pages, 4222 KiB  
Article
Detection of Apple Proliferation Disease Using Hyperspectral Imaging and Machine Learning Techniques
by Uwe Knauer, Sebastian Warnemünde, Patrick Menz, Bonito Thielert, Lauritz Klein, Katharina Holstein, Miriam Runne and Wolfgang Jarausch
Sensors 2024, 24(23), 7774; https://doi.org/10.3390/s24237774 - 4 Dec 2024
Cited by 3 | Viewed by 1510
Abstract
Apple proliferation is among the most important diseases in European fruit production. Early and reliable detection enables farmers to respond appropriately and to prevent further spreading of the disease. Traditional phenotyping approaches by human observers consider multiple symptoms, but these are difficult to [...] Read more.
Apple proliferation is among the most important diseases in European fruit production. Early and reliable detection enables farmers to respond appropriately and to prevent further spreading of the disease. Traditional phenotyping approaches by human observers consider multiple symptoms, but these are difficult to measure automatically in the field. Therefore, the potential of hyperspectral imaging in combination with data analysis by machine learning algorithms was investigated to detect the symptoms solely based on the spectral signature of collected leaf samples. In the growing seasons 2019 and 2020, a total of 1160 leaf samples were collected. Hyperspectral imaging with a dual camera setup in spectral bands from 400 nm to 2500 nm was accompanied with subsequent PCR analysis of the samples to provide reference data for the machine learning approaches. Data processing consists of preprocessing for segmentation of the leaf area, feature extraction, classification and subsequent analysis of relevance of spectral bands. The results show that imaging multiple leaves of a tree enhances detection results, that spectral indices are a robust means to detect the diseased trees, and that the potentials of the full spectral range can be exploited using machine learning approaches. Classification models like rRBF achieved an accuracy of 0.971 in a controlled environment with stratified data for a single variety. Combined models for multiple varieties from field test samples achieved classification accuracies of 0.731. Including spatial distribution of spectral data further improves the results to 0.751. Prediction of qPCR results by regression based on spectral data achieved RMSE of 14.491 phytoplasma per plant cell. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2024)
Show Figures

Figure 1

36 pages, 6391 KiB  
Article
Novel Insights into Phytoplasma Effectors
by Karla Gisel Carreón-Anguiano, Sara Elena Vila-Luna, Luis Sáenz-Carbonell and Blondy Canto-Canché
Horticulturae 2023, 9(11), 1228; https://doi.org/10.3390/horticulturae9111228 - 14 Nov 2023
Cited by 7 | Viewed by 3238
Abstract
Effectoromics has become integral to the identification of pathogen targets and/or host-resistant proteins for the genetic improvement of plants in agriculture and horticulture. Phytoplasmas are the causal agents of more than 100 plant diseases in economically important crops such as vegetables, spices, medicinal [...] Read more.
Effectoromics has become integral to the identification of pathogen targets and/or host-resistant proteins for the genetic improvement of plants in agriculture and horticulture. Phytoplasmas are the causal agents of more than 100 plant diseases in economically important crops such as vegetables, spices, medicinal plants, ornamentals, palms, fruit trees, etc. To date, around 20 effectors in phytoplasmas have been experimentally validated but the list of putative effectors comprises hundreds of different proteins. Very few families (tribes) have been identified based on homology, such as the SAP05-like, SAP11-like, SAP54-like and TENGU-like families. The lack of conservation in amino acid sequences slows the progress of effectoromics in phytoplasmas since many effectors must be studied individually. Here, 717 phytoplasma effector candidates and 21 validated effectors were characterized in silico to identify common features. We identified functional domains in 153 effectors, while 585 had no known domains. The most frequently identified domain was the sequence-variable mosaic domain (SVM domain), widely distributed in 87 phytoplasma effectors. Searching for de novo amino acid motifs, 50 were found in the phytoplasma effector dataset; 696 amino acid sequences of effectors had at least 1 motif while 42 had no motif at all. These data allowed us to organize effectors into 15 tribes, uncovering, for the first time, evolutionary relationships largely masked by lack of sequence conservation among effectors. We also identified 42 eukaryotic linear motifs (ELMs) in phytoplasma effector sequences. Since the motifs are related to common functions, this novel organization of phytoplasma effectors may help further advance effectoromics research to combat phytoplasma infection in agriculture and horticulture. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

11 pages, 1858 KiB  
Article
Clarithromycin Suppresses Apple Proliferation Phytoplasma in Explant Cultures
by Matěj Semerák, Jiří Sedlák and Radek Čmejla
Plants 2023, 12(22), 3820; https://doi.org/10.3390/plants12223820 - 10 Nov 2023
Cited by 2 | Viewed by 1436
Abstract
Apple proliferation, caused by ‘Candidatus Phytoplasma mali’, is one of the most important economic threats in the field of apple production. Especially at a young age, infected trees can be affected by excessive bud proliferation and general decline. The fruit quality is [...] Read more.
Apple proliferation, caused by ‘Candidatus Phytoplasma mali’, is one of the most important economic threats in the field of apple production. Especially at a young age, infected trees can be affected by excessive bud proliferation and general decline. The fruit quality is also significantly reduced by this disease. To investigate treatment options, we applied a clarithromycin chemotherapy to infected in vitro cultures of ‘Golden Delicious’. With increasing concentrations of clarithromycin in the media, the phytoplasma load decreased rapidly after one month of treatment, but phytotoxicity led to a pronounced mortality at 40 mg/L, which was the highest dose used in our experiment. Out of 45 initial explants, we obtained one negative mericlone and two mericlones with a concentration of phytoplasma DNA at the detection limit of PCR. The culture propagated from the mericlone that tested negative remained phytoplasma-free after 18 months of subculturing. Our results suggest the applicability of macrolide antibiotics against phytoplasma infections in vitro; however, it might be challenging to find the threshold zone where the concentration is sufficient for pathogen elimination, but not lethal for the plant material of different cultivars. Full article
Show Figures

Figure 1

14 pages, 1913 KiB  
Article
Molecular Characterization of Mitogenome of Cacopsylla picta and Cacopsylla melanoneura, Two Vector Species of ‘Candidatus Phytoplasma mali’
by Dana Šafářová, Erika Zrníková, Kateřina Holušová, Jana Ouředníčková, Martin Starý and Milan Navrátil
Agronomy 2023, 13(9), 2210; https://doi.org/10.3390/agronomy13092210 - 24 Aug 2023
Cited by 2 | Viewed by 1995
Abstract
The mitochondrial genomes of two vector psyllids of the ‘Candidatus Phytoplasma mali’, Cacopsylla picta and C. melanoneura, were sequenced using high-throughput sequencing on the Illumina platform. The main objective of the study was to describe their mitogenome and characterize their genetic [...] Read more.
The mitochondrial genomes of two vector psyllids of the ‘Candidatus Phytoplasma mali’, Cacopsylla picta and C. melanoneura, were sequenced using high-throughput sequencing on the Illumina platform. The main objective of the study was to describe their mitogenome and characterize their genetic variability and the potential changes in the context of the observed global warming. The four complete sequences for C. picta, 14,801 bp and 14,802 bp in length, two complete and one partial sequence for C. melanoneura, ranging from 14,879 bp to 14,881 bp in length, were obtained for the first time for these European apple psyllids. The detected intraspecies mtDNA identity was highly similar (99.85–99.98%), the identity’s similarity with other Cacopsylla species varied between 79.79 and 86.64%. The mitogenomes showed a typical mitochondrial DNA structure with 13 protein-coding genes, 2 rRNA genes and 22 tRNA genes; the presence of CGGA motif in the ND1-trnS2 junction was detected in both species. Phylogenetic analysis placed both species in close relationship with C. burckhardti within the Cacopsylla clade-I O group. The analysis of complete mitogenomes and of partial COI sequences of fifty-two Cacopsylla individuals showed a high homogeneity of genotypes over 15 years and among the different localities in the Czech Republic. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

20 pages, 5024 KiB  
Review
On Some Significant Phytoplasma Diseases of Forest Trees: An Update
by Carmine Marcone, Deividas Valiunas, Soma Mondal and Ramachandran Sundararaj
Forests 2021, 12(4), 408; https://doi.org/10.3390/f12040408 - 29 Mar 2021
Cited by 14 | Viewed by 5195
Abstract
This paper provides an updating of information of a selected number of major phytoplasma diseases of forest trees, with a focus on the associated phytoplasma taxa. Phytoplasma diseases of forest trees have been less extensively studied than those affecting fruit trees. Research on [...] Read more.
This paper provides an updating of information of a selected number of major phytoplasma diseases of forest trees, with a focus on the associated phytoplasma taxa. Phytoplasma diseases of forest trees have been less extensively studied than those affecting fruit trees. Research on the role of phytoplasmas as the cause of diseases of forest trees has only in the last few years been intensified, after sensitive and specific detection methods greatly based on PCR technology became available. Various phytoplasma taxa have been identified in naturally infected elm, ash, conifer, sandal, and eucalyptus trees, whereas only one phytoplasma taxon has been recorded in naturally infected alder trees. However, for almost all of the reviewed diseases, there is still sparse information about insect vectors, plant host range, strain virulence, pathogenicity, and host tolerance and resistance. Knowledge of these aspects is the basis for appropriate disease management. In particular, further research is required to clarify the role of phytoplasmas in asymptomatic trees. In addition, the etiological role of various “non-specific” phytoplasma taxa, which have been recorded in forest trees, while no data from pathological studies are available, needs to be further investigated. Full article
(This article belongs to the Special Issue Forest Pathology and Entomology)
Show Figures

Figure 1

20 pages, 5818 KiB  
Review
History and Current Status of Phytoplasma Diseases in the Middle East
by Chamran Hemmati, Mehrnoosh Nikooei, Ali M. Al-Subhi and Abdullah M. Al-Sadi
Biology 2021, 10(3), 226; https://doi.org/10.3390/biology10030226 - 15 Mar 2021
Cited by 34 | Viewed by 5752
Abstract
Phytoplasmas that are associated with fruit crops, vegetables, cereal and oilseed crops, trees, ornamental, and weeds are increasing at an alarming rate in the Middle East. Up to now, fourteen 16Sr groups of phytoplasma have been identified in association with more than 164 [...] Read more.
Phytoplasmas that are associated with fruit crops, vegetables, cereal and oilseed crops, trees, ornamental, and weeds are increasing at an alarming rate in the Middle East. Up to now, fourteen 16Sr groups of phytoplasma have been identified in association with more than 164 plant species in this region. Peanut witches’ broom phytoplasma strains (16SrII) are the prevalent group, especially in the south of Iran and Gulf states, and have been found to be associated with 81 host plant species. In addition, phytoplasmas belonging to the 16SrVI, 16SrIX, and 16SrXII groups have been frequently reported from a wide range of crops. On the other hand, phytoplasmas belonging to 16SrIV, 16SrV, 16SrX, 16SrXI, 16SrXIV, and 16SrXXIX groups have limited geographical distribution and host range. Twenty-two insect vectors have been reported as putative phytoplasma vectors in the Middle East, of which Orosius albicinctus can transmit diverse phytoplasma strains. Almond witches’ broom, tomato big bud, lime witches’ broom, and alfalfa witches’ broom are known as the most destructive diseases. The review summarizes phytoplasma diseases in the Middle East, with specific emphasis on the occurrence, host range, and transmission of the most common phytoplasma groups. Full article
(This article belongs to the Special Issue Plant-Microbe Interaction)
Show Figures

Figure 1

15 pages, 12805 KiB  
Article
Three Main Genes in the MAPK Cascade Involved in the Chinese Jujube-Phytoplasma Interaction
by Zhiguo Liu, Zhihui Zhao, Chaoling Xue, Lixin Wang, Lili Wang, Chunfang Feng, Liman Zhang, Zhe Yu, Jin Zhao and Mengjun Liu
Forests 2019, 10(5), 392; https://doi.org/10.3390/f10050392 - 2 May 2019
Cited by 12 | Viewed by 3141
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is an important economic forest species and multipurpose fruit tree in the family of Rhamnaceae. Phytoplasmas are significant prokaryotic pathogens, associated with more than 1000 plant diseases. Jujube witches’ broom disease (JWB) is a typical phytoplasma disease, [...] Read more.
Chinese jujube (Ziziphus jujuba Mill.) is an important economic forest species and multipurpose fruit tree in the family of Rhamnaceae. Phytoplasmas are significant prokaryotic pathogens, associated with more than 1000 plant diseases. Jujube witches’ broom disease (JWB) is a typical phytoplasma disease, caused by ‘Candidatus Phytoplasma ziziphi’. Mitogen-activated protein kinase (MAPK) cascades are highly universal signal transduction modules and play crucial roles in regulating innate immune responses in plants. Thus, in the current study, systematical expression profiles of 10 ZjMPK and 4 ZjMPKK genes were conducted in plantlets with JWB disease, plantlets recovered from JWB disease, the tissues showing different disease symptoms, and resistant/susceptible cultivars infected by JWB phytoplasma. We found that most ZjMPK and ZjMKK genes exhibited significant up- or down-regulation expression under phytoplasma infection, but the top three differentially expressed genes (DEGs) were ZjMPK2, ZjMKK2 and ZjMKK4, which showed the biggest times of gene’s significant difference expression in all materials. Based on STRING database analysis, ZjMKK2 and ZjMPK2 were involved in the same plant-pathogen interaction pathway, and Yeast two-hybrid screening showed that ZjMKK2 could interact with ZjMPK2. Finally, we deduced a pathway of jujube MAPK cascades which response to ‘Candidatus Phytoplasma ziziphi’ infection. Our study presents the first gene-family-wide investigation on the systematical expression analysis of MAPK and MAPKK genes in Chinese jujube under phytoplasma infection. These results provide valuable information for the further research on the signaling pathway of phytoplasma infection in Chinese jujube. Full article
(This article belongs to the Special Issue Roles and Interactions of Insects and Microbes in Forest Systems)
Show Figures

Figure 1

Back to TopTop