Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = frozen layer fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8506 KiB  
Article
Mitigation of Sink Voids in Thick-Walled Thermoplastic Components via Integrated Taguchi DOE and CAE Simulations
by Feng Wang, Wenbo Luo, Jiling Bu, Bo Zou and Xingwu Ding
Polymers 2025, 17(8), 1126; https://doi.org/10.3390/polym17081126 - 21 Apr 2025
Viewed by 445
Abstract
A gauge plate is a typical thick-walled injection-molded component featuring a complex construction used in high-speed railways, and it is prone to sink voids during the injection process. It is difficult to obtain a void-free injection molded part due to uneven cooling-induced localized [...] Read more.
A gauge plate is a typical thick-walled injection-molded component featuring a complex construction used in high-speed railways, and it is prone to sink voids during the injection process. It is difficult to obtain a void-free injection molded part due to uneven cooling-induced localized thermal gradients, crystallization shrinkage of semicrystalline thermoplastics, fiber orientation-induced anisotropic shrinkage, injection parameter-dependent fountain flow, and inconsistent core compensation. This work employed design of experiment (DOE) and computer-aided engineering (CAE) simulations to analyze the influence of injection parameters on the volumetric shrinkage of the gauge plate and to identify the optimal injection process. A Taguchi orthogonal array L9 was applied, in which four injection molding process parameters were varied at three different levels. The fundamental causes of sink void defects in the gauge plate were then examined via MoldFlow analysis on the basis of the optimized injection parameters. The MoldFlow study indicates a high probability of the presence of sink void defects in the injection-molded gauge plate. To minimize sink void defects, a structural optimization design of the gauge plate was implemented to achieve a more uniform wall thickness, and the advantages of this optimization were demonstrated via comparative analysis. The small batch production of the injection-molded gauge plates demonstrates that the optimized gauge plate shows no sink voids, ensuring consistent quality that adheres to the engineering process and technical specifications. Full article
Show Figures

Figure 1

22 pages, 3867 KiB  
Article
Film Boiling around a Finite Size Cylindrical Specimen—A Transient Conjugate Heat Transfer Approach
by Alen Cukrov, Yohei Sato, Ivanka Boras and Bojan Ničeno
Appl. Sci. 2023, 13(16), 9144; https://doi.org/10.3390/app13169144 - 10 Aug 2023
Cited by 5 | Viewed by 1792
Abstract
The DNS of film boiling requires strong computational resources that are difficult to obtain for daily CFD use by expert practitioners of industrial R&D. On the other hand, film boiling experiments are associated with the usage of expensive and highly sophisticated apparatus, and [...] Read more.
The DNS of film boiling requires strong computational resources that are difficult to obtain for daily CFD use by expert practitioners of industrial R&D. On the other hand, film boiling experiments are associated with the usage of expensive and highly sophisticated apparatus, and research to this end is relatively difficult due to high heat flow rates that are present in the process itself. When combined with transient heat conduction in a solid, the problem becomes significantly difficult. Therefore, a novel method in computation of conjugate heat transfer during film boiling in a quiescent liquid is proposed in this paper. The method relies on the solution of mass, momentum and energy conservation equations in a two-fluid framework, supplemented with the appropriate closures. Furthermore, turbulent flow was determined as an important parameter in obtaining an accurate solution to temperature field evolution in a solid specimen, via the proper modeling of the turbulent kinetic energy (TKE) value, that was imposed as a constant value, i.e., the frozen turbulence approach. It was found, in addition, that the appropriate TKE value can be obtained by use of Kelvin–Helmholtz instability theory in conjunction with boundary layer theory. The obtained results show excellent agreement with the experimental data within the first 15 s of the experiment, i.e., the first ca. 10% of the total duration of the film boiling mode of heat transfer. Furthermore, the heat transfer coefficient matched the error bands prescribed by the authors of this paper, which presented the correlations, whilst the averaged values are far beyond this band, i.e., are slightly more than 30% higher. Further inspection revealed a measure of similarity between the computational result of the volume fraction field distribution and the experiment, thus confirming the capability of the method to obtain realistic interface evolution in time. The method shows full capability for further pursuing industrial-scale film boiling problems that involve turbulent flow and the conjugate heat transfer approach. Full article
(This article belongs to the Topic Computational Fluid Dynamics (CFD) and Its Applications)
Show Figures

Figure 1

17 pages, 4078 KiB  
Article
Assessment of AIRS Version 7 Temperature Profiles and Low-Level Inversions with GRUAN Radiosonde Observations in the Arctic
by Lei Zhang, Minghu Ding, Xiangdong Zheng, Junming Chen, Jianping Guo and Lingen Bian
Remote Sens. 2023, 15(5), 1270; https://doi.org/10.3390/rs15051270 - 25 Feb 2023
Cited by 5 | Viewed by 2383
Abstract
The extensive global climate observing system (GCOS) reference upper-air network (GRUAN) datasets provide a chance to validate newly released Atmospheric Infrared Sounder (AIRS) version 7 (v7) products over the Arctic. This manuscript reports on the analysis performed to evaluate errors from AIRS version [...] Read more.
The extensive global climate observing system (GCOS) reference upper-air network (GRUAN) datasets provide a chance to validate newly released Atmospheric Infrared Sounder (AIRS) version 7 (v7) products over the Arctic. This manuscript reports on the analysis performed to evaluate errors from AIRS version 6 (v6) and v7 temperature profiles and to characterize the derived low-level temperature inversion (LLI) representativeness in the Arctic region. The AIRS averaging kernel, representing the AIRS measurement sensitivity, is applied to reduce the vertical resolution of the radiosonde profiles for comparison. Due to improved retrieval algorithms, v7 produces smaller biases in the troposphere and suppresses the cold bias in v6. Nevertheless, the profile-averaged root mean square error (RMSE) increased by over 30% in v7, particularly in the winter half-year when v7 showed a larger RMSE below 800 hPa. The AIRS temperature retrieval accuracy is primarily sensitive to surface type and cloud fraction. Compared to v6, v7 has less bias over frozen land and sea ice in different cloud fraction conditions. However, the RMSEs of v7 are more sensitive to the effective cloud fraction (ECF) and are highly influenced by a more significant contribution from nonfrozen land samples. Compared to the kernel-averaged radiosonde profiles, more than 80% of the temperature profiles from v6 and v7 accurately detect LLIs. The discreteness of the AIRS’s predefined pressure level results is consistent with the radiosondes only 65% of the time for LLI depth calculation. In contrast, the AIRS can obtain LLI intensity with a relatively high correlation (>0.9). With the AIRS temperature retrieval in the boundary layer further improved, it has the potential to be used as an independent LLI detector in the Arctic region. Full article
Show Figures

Graphical abstract

17 pages, 25614 KiB  
Article
Mapping Frozen Ground in the Qilian Mountains in 2004–2019 Using Google Earth Engine Cloud Computing
by Yuan Qi, Shiwei Li, Youhua Ran, Hongwei Wang, Jichun Wu, Xihong Lian and Dongliang Luo
Remote Sens. 2021, 13(1), 149; https://doi.org/10.3390/rs13010149 - 5 Jan 2021
Cited by 18 | Viewed by 5048
Abstract
The permafrost in the Qilian Mountains (QLMs), the northeastern margin of the Qinghai–Tibet Plateau, changed dramatically in the context of climate warming and increasing anthropogenic activities, which poses significant influences on the stability of the ecosystem, water resources, and greenhouse gas cycles. Yet, [...] Read more.
The permafrost in the Qilian Mountains (QLMs), the northeastern margin of the Qinghai–Tibet Plateau, changed dramatically in the context of climate warming and increasing anthropogenic activities, which poses significant influences on the stability of the ecosystem, water resources, and greenhouse gas cycles. Yet, the characteristics of the frozen ground in the QLMs are largely unclear regarding the spatial distribution of active layer thickness (ALT), the maximum frozen soil depth (MFSD), and the temperature at the top of the permafrost or the bottom of the MFSD (TTOP). In this study, we simulated the dynamics of the ALT, TTOP, and MFSD in the QLMs in 2004–2019 in the Google Earth Engine (GEE) platform. The widely-adopted Stefan Equation and TTOP model were modified to integrate with the moderate-resolution imaging spectroradiometer (MODIS) land surface temperature (LST) in GEE. The N-factors, the ratio of near-surface air to ground surface freezing and thawing indices, were assigned to the freezing and thawing indices derived with MODIS LST in considerations of the fractional vegetation cover derived from MODIS normalized difference vegetation index (NDVI). The results showed that the GEE platform and remote sensing imagery stored in Google cloud could be quickly and effectively applied to obtain the spatial and temporal variation of permafrost distribution. The area with TTOP < 0 °C is 8.4 × 104 km2 (excluding glaciers and lakes) and accounts for 46.6% of the whole QLMs, the regional mean ALT is 2.43 ± 0.44 m, while the regional mean MFSD is 2.54 ± 0.45 m. The TTOP and ALT increase with the decrease of elevation from the sources of the sub-watersheds to middle and lower reaches. There is a strong correlation between TTOP and elevation (slope = −1.76 °C km−1, p < 0.001). During 2004–2019, the area of permafrost decreased by 20% at an average rate of 0.074 × 104 km2·yr−1. The regional mean MFSD decreased by 0.1 m at a rate of 0.63 cm·yr−1, while the regional mean ALT showed an exception of a decreasing trend from 2.61 ± 0.45 m during 2004–2005 to 2.49 ± 0.4 m during 2011–2015. Permafrost loss in the QLMs in 2004–2019 was accelerated in comparison with that in the past several decades. Compared with published permafrost maps, this study shows better calculation results of frozen ground in the QLMs. Full article
(This article belongs to the Special Issue Recent Advances in Cryospheric Sciences)
Show Figures

Graphical abstract

25 pages, 9305 KiB  
Article
Estimation of Snow Depth over the Qinghai-Tibetan Plateau Based on AMSR-E and MODIS Data
by Liyun Dai, Tao Che, Hongjie Xie and Xuejiao Wu
Remote Sens. 2018, 10(12), 1989; https://doi.org/10.3390/rs10121989 - 8 Dec 2018
Cited by 66 | Viewed by 5872
Abstract
Snow cover over the Qinghai-Tibetan Plateau (QTP) plays an important role in climate, hydrological, and ecological systems. Currently, passive microwave remote sensing is the most efficient way to monitor snow depth on global and regional scales; however, it presents a serious overestimation of [...] Read more.
Snow cover over the Qinghai-Tibetan Plateau (QTP) plays an important role in climate, hydrological, and ecological systems. Currently, passive microwave remote sensing is the most efficient way to monitor snow depth on global and regional scales; however, it presents a serious overestimation of snow cover over the QTP and has difficulty describing patchy snow cover over the QTP because of its coarse spatial resolution. In this study, a new spatial dynamic method is developed by introducing ground emissivity and assimilating the snow cover fraction (SCF) and land surface temperature (LST) of the Moderate Resolution Imaging Spectroradiometer (MODIS) to derive snow depth at an enhanced spatial resolution. In this method, the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) brightness temperature and MODIS LST are used to calculate ground emissivity. Additionally, the microwave emission model of layered snowpacks (MEMLS) is applied to simulate brightness temperature with varying ground emissivities to determine the key coefficients in the snow depth retrieval algorithm. The results show that the frozen ground emissivity presents large spatial heterogeneity over the QTP, which leads to the variation of coefficients in the snow depth retrieval algorithm. The overestimation of snow depth is rectified by introducing the ground emissivity factor at 18 and 36 GHz. Compared with in situ observations, the snow cover accuracy of the new method is 93.9%, which is better than the 60.2% accuracy of the existing method (old method) which does not consider ground emissivity. The bias and root-mean-square error (RMSE) of snow depth are 1.03 cm and 7.05 cm, respectively, for the new method; these values are much lower than the values of 6.02 cm and 9.75 cm, respectively, for the old method. However, the snow cover accuracy with depths between 1 and 3 cm is below 60%, and snow depths greater than 25 cm are underestimated in Himalayan mountainous areas. In the future, the snow cover identification algorithm should be improved to identify shallow snow cover over the QTP, and topography should be considered in the snow depth retrieval algorithm to improve snow depth accuracy in mountainous areas. Full article
Show Figures

Figure 1

Back to TopTop