Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = fractal geometry porous media model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 20653 KB  
Article
A Numerical Study of the Sealing and Interstage Pressure Drop Characteristics of a Four-Tooth Three-Stage Brush Combination Seal
by Chao Gu, Yingqun Ma, Wei Zhao, Xiuming Sui, Bin Hu and Qingjun Zhao
Appl. Sci. 2025, 15(7), 3899; https://doi.org/10.3390/app15073899 - 2 Apr 2025
Cited by 1 | Viewed by 940
Abstract
Premature seal failure induced by the unevenness of interstage pressure distribution in multi-stage brush seals significantly compromises the sealing efficiency of Air-Turbo Rocket (ATR) engines operating under high-pressure (megapascal-level) differential conditions. Conventional pressure equalization designs for such seals often result in significant leakage [...] Read more.
Premature seal failure induced by the unevenness of interstage pressure distribution in multi-stage brush seals significantly compromises the sealing efficiency of Air-Turbo Rocket (ATR) engines operating under high-pressure (megapascal-level) differential conditions. Conventional pressure equalization designs for such seals often result in significant leakage rate increases. This study addresses the pressure imbalance phenomenon in four-tooth three-stage brush composite seals through a novel fractal–geometric porous-media model, rigorously validated against experimental data. Systematic investigations were conducted to elucidate the effects of structural parameters and operational conditions on both sealing performance and pressure distribution characteristics. Key findings reveal that, under the prototype structure parameter, the first-, second-, and third-stage brush bundles account for 18.3%, 30.0%, and 43.3% of the total pressure drop, respectively, with grate teeth contributing 8.4%, demonstrating an inherent pressure imbalance. Axial brush spacing exhibits a minimal impact on the pressure distribution, while the gradient thickness settings of the brush bundles show limited influence. Radial clearance optimization and gradient backplate height adjustment effectively regulate pressure distribution, albeit with associated leakage rate increases. Structural modifications based on these principles achieved only a 5.8% leakage increment while reducing the maximum bundle pressure drop by 23%, demonstrating effective pressure balancing. A simplified analysis of entropy reveals that the fundamental mechanism governing the pressure imbalance stems from non-uniform entropy generation caused by aerodynamic damping dissipation across sequential brush stages. These findings establish a dampened dissipation-based theoretical framework for designing high-performance multistage brush seals in aerospace applications, providing critical insights for achieving an optimal balance between leakage control and pressure equalization in extreme-pressure environments. Full article
Show Figures

Figure 1

12 pages, 503 KB  
Brief Report
A Mechanical Picture of Fractal Darcy’s Law
by Lucero Damián Adame, Claudia del Carmen Gutiérrez-Torres, Bernardo Figueroa-Espinoza, Juan Gabriel Barbosa-Saldaña and José Alfredo Jiménez-Bernal
Fractal Fract. 2023, 7(9), 639; https://doi.org/10.3390/fractalfract7090639 - 22 Aug 2023
Cited by 10 | Viewed by 2066
Abstract
The main goal of this manuscript is to generalize Darcy’s law from conventional calculus to fractal calculus in order to quantify the fluid flow in subterranean heterogeneous reservoirs. For this purpose, the inherent features of fractal sets are scrutinized. A set of fractal [...] Read more.
The main goal of this manuscript is to generalize Darcy’s law from conventional calculus to fractal calculus in order to quantify the fluid flow in subterranean heterogeneous reservoirs. For this purpose, the inherent features of fractal sets are scrutinized. A set of fractal dimensions is incorporated to describe the geometry, morphology, and fractal topology of the domain under study. These characteristics are known through their Hausdorff, chemical, shortest path, and elastic backbone dimensions. Afterward, fractal continuum Darcy’s law is suggested based on the mapping of the fractal reservoir domain given in Cartesian coordinates xi into the corresponding fractal continuum domain expressed in fractal coordinates ξi by applying the relationship ξi=ϵ0(xi/ϵ0)αi1, which possesses local fractional differential operators used in the fractal continuum calculus framework. This generalized version of Darcy’s law describes the relationship between the hydraulic gradient and flow velocity in fractal porous media at any scale including their geometry and fractal topology using the αi-parameter as the Hausdorff dimension in the fractal directions ξi, so the model captures the fractal heterogeneity and anisotropy. The equation can easily collapse to the classical Darcy’s law once we select the value of 1 for the alpha parameter. Several flow velocities are plotted to show the nonlinearity of the flow when the generalized Darcy’s law is used. These results are compared with the experimental data documented in the literature that show a good agreement in both high-velocity and low-velocity fractal Darcian flow with values of alpha equal to 0<α1<1 and 1<α1<2, respectively, whereas α1=1 represents the standard Darcy’s law. In that way, the alpha parameter describes the expected flow behavior which depends on two fractal dimensions: the Hausdorff dimension of a porous matrix and the fractal dimension of a cross-section area given by the intersection between the fractal matrix and a two-dimensional Cartesian plane. Also, some physical implications are discussed. Full article
(This article belongs to the Special Issue Physical Phenomena on Fractals and in Fractional Dimension Spaces)
Show Figures

Figure 1

26 pages, 7042 KB  
Article
Analysis of the Total Leakage Characteristics of Finger Seal Considering Fractal Wear and Fractal Porous Media Seepage Effects
by Junjie Lei, Meihong Liu, Wei Chang and Yongneng Wan
Fractal Fract. 2023, 7(7), 494; https://doi.org/10.3390/fractalfract7070494 - 22 Jun 2023
Cited by 3 | Viewed by 1956
Abstract
As an advanced flexible dynamic sealing technology, the leakage characteristics of a finger seal (FS) is one of the key research areas in this technology field. Based on the fractal theory, this paper establishes a mathematical model of the FS main leakage rate [...] Read more.
As an advanced flexible dynamic sealing technology, the leakage characteristics of a finger seal (FS) is one of the key research areas in this technology field. Based on the fractal theory, this paper establishes a mathematical model of the FS main leakage rate considering the fractal wear effect by taking into account the influence of the wear height on the basis of the eccentric annular gap flow equation. Based on the Hagen-Poiseuille law and the fractal geometry theory of porous media, a mathematical model of the FS side leakage rate considering the fractal porous media seepage effect is developed. Then, a mathematical model of the FS total leakage rate is established. The results show that the mathematical model of the FS total leakage rate is verified with the test results, the maximum error rate is less than 5%, and the mathematical model of the FS total leakage rate is feasible. With the gradual increase in working conditions and eccentricity, the FS main leakage rate gradually increases. In addition, the effects of the fractal dimension, fractal roughness parameters and porosity after loading on the FS main leakage rate are negligible. As the fractal dimension of tortuosity after loading gradually decreases, the fractal dimension of porosity after loading gradually increases, and the FS side leakage rate gradually increases. As the porosity after loading gradually increases, the FS side leakage rate gradually increases. Under different working conditions, different fractal characteristic parameters and different porosities after loading, the weight of the FS main leakage rate is much greater than that of the FS side leakage rate by more than 95%. Full article
(This article belongs to the Special Issue Transport Phenomena in Porous Media and Fractal Geometry)
Show Figures

Figure 1

16 pages, 5038 KB  
Article
Fractal Dimension of Digital 3D Rock Models with Different Pore Structures
by Xiaobin Li, Wei Wei, Lei Wang and Jianchao Cai
Energies 2022, 15(20), 7461; https://doi.org/10.3390/en15207461 - 11 Oct 2022
Cited by 24 | Viewed by 3586
Abstract
The macroscopic physical properties of rocks are profoundly determined by their microstructure, and the research of accurately characterizing rock pore structure has been extensively carried out in the fields of petroleum engineering and geoscience. Fractal geometry is an effective means of quantitatively estimating [...] Read more.
The macroscopic physical properties of rocks are profoundly determined by their microstructure, and the research of accurately characterizing rock pore structure has been extensively carried out in the fields of petroleum engineering and geoscience. Fractal geometry is an effective means of quantitatively estimating the pore structure properties of porous media. In this study, the evolution law of the fractal dimension and the quantitative relationship between the fractal dimension and porosity were investigated based on the digital 3D rock models. First, three kinds of models with gradually changing pore structures, namely sedimentation, compaction, and cementation, were systematically reconstructed by the process-based approach. Then, the fractal dimensions of the skeleton, pore, and surface of the models were computed and analyzed. Finally, the relationships among the fractal dimension, porosity, and complexity were explored qualitatively. These works reveal the changing laws of three types of fractal dimensions for different pore structure models. The pore structure differences in sedimentation model can only be distinguished by the surface fractal dimension, while both pore and surface fractal dimensions are available parameters for characterizing different pore structures in compaction and cementation models. The quantitative relations between box-counting fractal dimension and porosity were established, which can be expressed by combining linear and logarithmic formulas. The comparison of fractal dimensions of compaction and cementation models proves that fractal dimensions can distinguish the subtle pore structure differences in digital 3D rock models. Understanding the evolution law between the fractal dimension and pore structure parameters provides more references for classifying and evaluating rock pore structure features using fractal dimensions. Full article
(This article belongs to the Collection Flow and Transport in Porous Media)
Show Figures

Figure 1

11 pages, 1451 KB  
Article
Permeability Prediction of Saturated Geomaterials with Revised Pore–Solid Fractal Model and Critical Path Analysis
by Lei Kou, Wuxue Li and Jujie Wu
Fractal Fract. 2022, 6(7), 351; https://doi.org/10.3390/fractalfract6070351 - 23 Jun 2022
Cited by 5 | Viewed by 2344
Abstract
The revised pore–solid fractal (PSF) model is presented by using the largest inscribed circle-based geometries of squares or cubes to replace the original pore or solid subregions as the new pore or solid phase in porous media. The revised PSF model changes the [...] Read more.
The revised pore–solid fractal (PSF) model is presented by using the largest inscribed circle-based geometries of squares or cubes to replace the original pore or solid subregions as the new pore or solid phase in porous media. The revised PSF model changes the discrete lacunar pore and solid phases in the original PSF model to integrated. Permeability is an intrinsic property of geomaterials and has broad applications in exploring fluid flow and species transport. Based on the revised PSF model and critical path analysis, a fractal model for predicting the permeability of saturated geomaterials is proposed. The permeability prediction model is verified by comparison with the existing predicted model and the laboratory testing. The results show that the predicted permeabilities match the measured values very well. This work provides a theoretical framework for the revised PSF model and its application in predicting the permeability of geomaterials. Full article
(This article belongs to the Topic Mathematical Modeling in Physical Sciences)
Show Figures

Figure 1

17 pages, 3823 KB  
Article
Characterization of Two-Phase Flow from Pore-Scale Imaging Using Fractal Geometry under Water-Wet and Mixed-Wet Conditions
by Shuangmei Zou, Peixing Xu, Congjiao Xie, Xuan Deng and Haodong Tang
Energies 2022, 15(6), 2036; https://doi.org/10.3390/en15062036 - 10 Mar 2022
Cited by 2 | Viewed by 2908
Abstract
High resolution micro-computed tomography images for multiphase flow provide us an effective tool to understand the mechanism of fluid flow in porous media, which is not only fundamental to the understanding of macroscopic measurements but also for providing benchmark datasets to validate pore-scale [...] Read more.
High resolution micro-computed tomography images for multiphase flow provide us an effective tool to understand the mechanism of fluid flow in porous media, which is not only fundamental to the understanding of macroscopic measurements but also for providing benchmark datasets to validate pore-scale modeling. In this study, we start from two datasets of pore scale imaging of two-phase flow obtained experimentally under in situ imaging conditions at different water fractional flows under water-wet and mixed-wet conditions. Then, fractal dimension, lacunarity and succolarity are used to quantify the complexity, clustering and flow capacity of water and oil phases. The results show that with the wettability of rock surface altered from water-wet to mixed-wet, the fractal dimension for the water phase increases while for the oil phase, it decreases obviously at low water saturation. Lacunarity largely depends on the degree of wettability alteration. The more uniform wetting surfaces are distributed, the more homogeneous the fluid configuration is, which indicates smaller values for lacunarity. Moreover, succolarity is shown to well characterize the wettability effect on flow capacity. The succolarity of the oil phase in the water-wet case is larger than that in the mixed-wet case while for the water phase, the succolarity value in the water-wet is small compared with that in the mixed-wet, which show a similar trend with relative permeability curves for water-wet and mixed-wet. Our study provides a perspective into the influence that phase geometry has on relative permeability under controlled wettability and the resulting phase fractal changes under different saturations that occur during multiphase flow, which allows a means to understand phase geometric changes that occur during fluid flow. Full article
(This article belongs to the Collection Flow and Transport in Porous Media)
Show Figures

Figure 1

17 pages, 3948 KB  
Article
A Novel Porous Media Permeability Model Based on Fractal Theory and Ideal Particle Pore-Space Geometry Assumption
by Yongquan Hu, Qiang Wang, Jinzhou Zhao, Shouchang Xie and Hong Jiang
Energies 2020, 13(3), 510; https://doi.org/10.3390/en13030510 - 21 Jan 2020
Cited by 18 | Viewed by 5416
Abstract
In this paper, a novel porous media permeability model is established by using particle model, capillary bundle model and fractal theory. The three-dimensional irregular spatial characteristics composed of two ideal particles are considered in the model. Compared with previous models, the results of [...] Read more.
In this paper, a novel porous media permeability model is established by using particle model, capillary bundle model and fractal theory. The three-dimensional irregular spatial characteristics composed of two ideal particles are considered in the model. Compared with previous models, the results of our model are closer to the experimental data. The results show that the tortuosity fractal dimension is negatively correlated with porosity, while the pore area fractal dimension is positively correlated with porosity; The permeability is negatively correlated with the tortuosity fractal dimension and positively correlated with the integral fractal dimension of pore surface and particle radius. When the tortuosity fractal dimension is close to 1 and the pore area fractal dimension is close to 2, the faster the permeability changes, the greater the impact. Different particle arrangement has great influence on porous media permeability. When the porosity is close to 0 and close to 1, the greater the difference coefficient is, the more the permeability of different arrangement is affected. In addition, the larger the particle radius is, the greater the permeability difference coefficient will be, and the greater the permeability difference will be for different particle arrangements. With the increase of fractal dimension, the permeability difference coefficient first decreases and then increases. When the pore area fractal dimension approaches 2, the permeability difference coefficient changes faster and reaches the minimum value, and when the tortuosity fractal dimension approaches 1, the permeability difference coefficient changes faster and reaches the minimum value. Our research is helpful to further understand the connotation of medium transmission in porous media. Full article
Show Figures

Figure 1

19 pages, 4017 KB  
Article
An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs
by Honghua Tao, Liehui Zhang, Qiguo Liu, Qi Deng, Man Luo and Yulong Zhao
Energies 2018, 11(12), 3422; https://doi.org/10.3390/en11123422 - 6 Dec 2018
Cited by 9 | Viewed by 3772
Abstract
The use of multiple hydraulically fractured horizontal wells has been proven to be an efficient and effective way to enable shale gas production. Meanwhile, analytical models represent a rapid evaluation method that has been developed to investigate the pressure-transient behaviors in shale gas [...] Read more.
The use of multiple hydraulically fractured horizontal wells has been proven to be an efficient and effective way to enable shale gas production. Meanwhile, analytical models represent a rapid evaluation method that has been developed to investigate the pressure-transient behaviors in shale gas reservoirs. Furthermore, fractal-anomalous diffusion, which describes a sub-diffusion process by a non-linear relationship with time and cannot be represented by Darcy’s law, has been noticed in heterogeneous porous media. In order to describe the pressure-transient behaviors in shale gas reservoirs more accurately, an improved analytical model based on the fractal-anomalous diffusion is established. Various diffusions in the shale matrix, pressure-dependent permeability, fractal geometry features, and anomalous diffusion in the stimulated reservoir volume region are considered. Type curves of pressure and pressure derivatives are plotted, and the effects of anomalous diffusion and mass fractal dimension are investigated in a sensitivity analysis. The impact of anomalous diffusion is recognized as two opposite aspects in the early linear flow regime and after that period, when it changes from 1 to 0.75. The smaller mass fractal dimension, which changes from 2 to 1.8, results in more pressure and a drop in the pressure derivative. Full article
(This article belongs to the Special Issue Flow and Transport Properties of Unconventional Reservoirs 2018)
Show Figures

Figure 1

11 pages, 1473 KB  
Article
A Non-Linear Flow Model for Porous Media Based on Conformable Derivative Approach
by Gang Lei, Nai Cao, Di Liu and Huijie Wang
Energies 2018, 11(11), 2986; https://doi.org/10.3390/en11112986 - 1 Nov 2018
Cited by 18 | Viewed by 4316
Abstract
Prediction of the non-linear flow in porous media is still a major scientific and engineering challenge, despite major technological advances in both theoretical and computational thermodynamics in the past two decades. Specifically, essential controls on non-linear flow in porous media are not yet [...] Read more.
Prediction of the non-linear flow in porous media is still a major scientific and engineering challenge, despite major technological advances in both theoretical and computational thermodynamics in the past two decades. Specifically, essential controls on non-linear flow in porous media are not yet definitive. The principal aim of this paper is to develop a meaningful and reasonable quantitative model that manifests the most important fundamental controls on low velocity non-linear flow. By coupling a new derivative with fractional order, referred to conformable derivative, Swartzendruber equation and modified Hertzian contact theory as well as fractal geometry theory, a flow velocity model for porous media is proposed to improve the modeling of Non-linear flow in porous media. Predictions using the proposed model agree well with available experimental data. Salient results presented here include (1) the flow velocity decreases as effective stress increases; (2) rock types of “softer” mechanical properties may exhibit lower flow velocity; (3) flow velocity increases with the rougher pore surfaces and rock elastic modulus. In general, the proposed model illustrates mechanisms that affect non-linear flow behavior in porous media. Full article
(This article belongs to the Special Issue Flow and Transport Properties of Unconventional Reservoirs 2018)
Show Figures

Figure 1

Back to TopTop