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Abstract: The main goal of this manuscript is to generalize Darcy’s law from conventional calculus
to fractal calculus in order to quantify the fluid flow in subterranean heterogeneous reservoirs. For
this purpose, the inherent features of fractal sets are scrutinized. A set of fractal dimensions is
incorporated to describe the geometry, morphology, and fractal topology of the domain under study.
These characteristics are known through their Hausdorff, chemical, shortest path, and elastic backbone
dimensions. Afterward, fractal continuum Darcy’s law is suggested based on the mapping of the
fractal reservoir domain given in Cartesian coordinates xi into the corresponding fractal continuum
domain expressed in fractal coordinates ξi by applying the relationship ξi = ε0(xi/ε0)

αi−1, which
possesses local fractional differential operators used in the fractal continuum calculus framework.
This generalized version of Darcy’s law describes the relationship between the hydraulic gradient
and flow velocity in fractal porous media at any scale including their geometry and fractal topology
using the αi-parameter as the Hausdorff dimension in the fractal directions ξi, so the model captures
the fractal heterogeneity and anisotropy. The equation can easily collapse to the classical Darcy’s
law once we select the value of 1 for the alpha parameter. Several flow velocities are plotted to
show the nonlinearity of the flow when the generalized Darcy’s law is used. These results are
compared with the experimental data documented in the literature that show a good agreement in
both high-velocity and low-velocity fractal Darcian flow with values of alpha equal to 0 < α1 < 1
and 1 < α1 < 2, respectively, whereas α1 = 1 represents the standard Darcy’s law. In that way, the
alpha parameter describes the expected flow behavior which depends on two fractal dimensions:
the Hausdorff dimension of a porous matrix and the fractal dimension of a cross-section area given
by the intersection between the fractal matrix and a two-dimensional Cartesian plane. Also, some
physical implications are discussed.

Keywords: fractal Darcy law; fractal continuum calculus; Hausdorff dimension; pressure gradient;
naturally fractured reservoir

1. Introduction

Fractals are useful for modeling physical and applied sciences phenomena which
are scale-invariant and exhibit dimensions that transcend integer values as well as self-
similarity [1,2]. A fractal object is defined as an irregular geometrical shape such that
its Hausdorff dimension, dH, is larger than its topological dimension, dt (see [3,4] and
references therein).

Many natural structures have irregular geometries exhibiting statistical scale invari-
ance over a great range of length scales L [5]. Specifically, it has been proved that naturally
fractured reservoirs possess pore and fracture networks whose heterogeneity is almost
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always fractal [6]. So, there is a complex fluid flow path that cannot be described by
traditional geometry [7,8].

Multiphase flows in porous materials is one of most important issues of hydrological
and petroleum engineering. Likewise, Darcy’s law is a popular model which describes
the characteristics of fluid movement through a porous medium. The standard Darcy’s
equation takes the form [9]

q = − k
µ

dp
dx1

, (1)

where q is the the flux, k represents the absolute permeability of the porous domain, µ
is the dynamic viscosity of the liquid, and dp/dx1 denotes the pressure gradient. The
above equation describes a linear relationship between the velocity field and the pressure
gradient [10,11] and it is only valid for very low velocities or at low Reynolds numbers
Re < 10. Nevertheless, in the case of relatively fast flow (Re > 10) or relatively high
Knudsen numbers (Kn > 0.1) [12,13], Darcy’s linear relation between the velocity and
pressure drop is no longer valid; therefore, Equation (1) is not enough to describe this flow
behavior, which is called non-Darcian flow, specifically in fractal objects, which present a
nonlinear relationship between the flow velocity and hydraulic gradient (for a short review,
see [14]).

Accordingly, several empirical formulas using ordinary calculus have been proposed
to model flows that are different to the Darcian regime in fractured reservoirs. An in-
crease in the flow rate captured by nonlinear equations was observed, such as the power
function [15,16], exponential function [17], and Gamma function [18].

Fractional calculus is another efficient tool to obtain a better description of the flux
and of the hydraulic gradient through generalized Darcy’s equations [14].

Although fractional calculus has been used from L’Opital and Leibniz (1965) [19,20],
specifically the concept of fractional hydrology was put forward around 1990 [21] and has
remained popular even nowadays. Consequently, a huge number of different models of
Darcy’s law with fractional geometry were developed [22–26].

In this regard, a novel description on spatial fractional Darcy’s law controlled by
Riemann–Liouville operators was introduced by [27] as

q = − kα

µ

dα p
dxα

1
, (2)

where kα is the fractional permeability and 0 < α ≤ 1. If α = 1 in Equation (2), then
Equation (1) is obtained. Another formulation relating the flux to the pressure gradient
on the sample of length x1 in the flow direction using fractional calculus was suggested
by [28], which has dimensionless variables,

qβ,D = −δβ,D
∂β

∂rβ
D

pD (3)

using Weyl’s fractional differential operator of order β = <+. When β = 1, the fraction
mechanic in Equation (3) reduces to a classical mechanic description given by Equation (1).

All fractional Darcy’s equations have shown to be better models than the standard
Darcy’s equation to describe nonlinearity between the fluid flux and hydraulic gradient.
However, validation of non-Darcian models seems to be an endless challenge because
alternative models lead to very different solutions of the same problems for fractal porous
media. That is why the generalizations from conventional to fractional calculus use stan-
dard measures [21] such as length which is not a suitable measure for fractal sets [29].
A more complete model of physical phenomena must include scaling laws and fractality in
fractional mechanics [30,31].
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In this context, a solution of physical problems on fractal sets was formulated by
some researchers using non-standard measures like the Hausdorff measure in different
frameworks, for example, fractal geometry [32–34] and the fractal continuum [35–37]. These
include both non-integer dimensions and self-similar properties in order to characterize
the geometry and fractal topology of the fractal object under study.

Fractal continuum calculus (F α-CC) is a vector local differential calculus developed
by Balankin and Elizarraraz [37,38] to provide a generalization of ordinary calculus to
include fractal sets Fn. F α-CC consists of mapping mechanical problems for fractal media
embedded in the Euclidean space xi ∈ En into the corresponding problems for the fractal
continuum with spatial coordinates ξi ∈ F α [39]. The formulation employs local fractional
differential operators [38]. This calculus makes possible an approximation of the non-
differentiable functions defined on fractals by differentiable analytic envelopes [39].

Fractal continuum calculus has been applied to solve several mechanical problems
on fractals mapped onto boundary value problems in a fractal continuum, such as hy-
drodynamics and the Newtonian fractal fluid equations [37,38]; Maxwell and diffusion
equations [40,41]; and the Euler–Bernoulli bending beam [42,43].

The goal of this work is to generalize Darcy’s law, relating the flux to the pressure
drop across a sample length of a porous media and similar phenomena. The mathematical
tools of non-integer-dimensions calculus and fractal geometry and topology, along with the
self-similar properties of naturally fractured reservoirs, allow for a more complete depiction
of transport phenomena away from the traditional Darcy’s law, which is impossible to
describe by conventional calculus, because non-conventional reservoirs have discontinuous
points and non-differentiable continuous functions. By contrast, ordinary calculus deals
with smooth and continuous functions on Euclidean spaces, where concepts such as limits,
derivatives, and continuity are well-defined.

The manuscript’s structure is outlined as follows: In Section 2, we provide an overview
of fractal continuum calculus, and Section 3 introduces the fractal Darcy’s law in the fractal
continuum calculus sense. Section 4 presents an analysis and discussion of the mechanical
implications and Section 5 finishes the article with conclusions.

2. Mathematical Background

In this section, we review and define the mathematical tools needed for the forthcom-
ing analysis.

2.1. Spatial Coordinates Embedded in Euclidean Space xi ∈ E3 of a Fractal F 3

The property of a fractal domain is that it does not depend on the unit of measurement
and it is ruled by the scaling law [1] N ∼ (L/ε)dH , where the value of dH remains constant
within a bounded range of length scales ε0 ≤ ε ≤ L < εC, with ε0 and εC being the lower
and upper cutoffs. Its Hausdorff dimension exceeds its topological dimension and at the
same time cannot continuously fill the Euclidean space Ed where it resides [44], such that
dt < dH < d. Therefore, the functions on the fractal space are non-differentiable and
discontinuous [42].

In addition, the Hausdorff dimension is associated with the Euclidean metric (ε)
defined in E3. Nonetheless, the fractal domain can be characterized by another metric
without reference to the embedding into the Euclidean space [44], called the geodesic
metric (ε`). Hence, the fractal topology is characterized by the chemical dimension d` [41]
as N ∼ (L/ε`)

d` , where the value of d` keeps constant within a bounded range of the length
scales dt ≤ ε` ≤ L ≤ n, with dt and n = 3 being the lower and upper cutoffs, respectively.
In addition, the integer part of the chemical dimension bd`c determines the number of
orthogonal fractional coordinates on the fractal domain under study [39]: (ξi and AFi ).

On the other hand, we recall the following fractal parameters:

i The fractal distance xF is defined by xF = ε0(L/ε0)
αi , where α is the fractal dimension

of the fractal coordinates ξi.
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ii The fractal area of the cross section AF of the fractal domain (see Figure 1) with
respect to its linear size L is given by AF = ε2

0(L/ε0)
dAi , with dAi being the fractal

dimension of the cross-sectional area given by the intersection between the fractal and
a two-dimensional Cartesian plane in E3.

iii The fractal mass MF , which scales with the region size L as [35] MF = ρ0xFAF =

ρ0ε3
0(L/ε0)

dH , where
αi = dH − dAi , (4)

and ρ0 is the mass density.

Taking into account these concepts, we used the fractal parameters of the Menger
sponge path-connected fractal. It is known that the Menger sponge can be constructed
from a middle-γ Cantor set for 0 < γ < 1, which is defined as Cγ = ∩∞

n=1C
γ
n [45], where n

denotes the iteration number. Accordingly, the Sierpinski carpet and Menger sponge are
the two- and three-dimensional versions of the middle-γ Cantor set [46] as is sketched in
Figure 1. The Hausdorff dimension of these fractals is given by

dH = d · log(L/ε0 − β)

log(L/ε0)
(5)

where d is the dimension of the embedding Euclidean space, L/ε0 is the size of the boxes
covering the fractal mass, and β denotes the deleted boxes of the fractal mass. The fractal
mass can be the length of a line or the area of a surface or the volume of an object. So,
in Equation (5), d = 1, 2, 3 represent the Haudorff dimension of the Cantor set, Sierpinski
carpet, and Menger sponge, respectively [47].

(a) F1 ⊂ E1

(b) F2 ⊂ E2

(c) F3 ⊂ E3

Figure 1. Standard Menger sponge of iteration number n = 2. (a) F1 is the Cantor set, (b) F2 is the
Sierpinski carpet and represents the cross-section area, and (c) F3 is the Menger sponge.

2.2. Spatial Coordinates in the Fractal Continuum ξi ∈ Fα

The fractal continuum is a three-dimensional domain F 3 ⊂ E3 filled with continuous
matter [39]. It is equipped with rules pertaining to integro-differential calculus, such that
its properties are continuous and differentiable functions (see [39]). Then, the topological
dimension is given by dt = 3 > dH. A path-connected fractal where bd`c < 3 as the Menger
sponge having d` = dH ≈ 2.72 and bd`c = 2 possesses a pair of mutually orthogonal fractal
coordinates (ξi, AFi ) associated with the decomposition of the infinitesimal volume element
F 3

2.72 [39]:

dV2.72 = dξi(xi)dAFi

= c(i)1 (xi)c
(i)
2 dxidAi

= c3(xk)dV

= c3dx1dx2dx3, (6)



Fractal Fract. 2023, 7, 639 5 of 12

where dAi = dxj · dxk and dAFi are the infinitesimal area elements on the intersection be-
tween F 3 and the two-dimensional plane perpendicular to the i-axis in E3 and in F 3 ⊂ E3,
respectively, while c(i)2 (xj 6=i) is the density of the admissible states in the plane of this inter-

section. From Equation (6) and the fractal mass MF = ρ0ε3
0(L/ε0)

dH , the transformation
functions in F 3 ⊂ E3 obey the following relationship [38]

c3(xi) = c(k)1 (xk)c
(k)
2 , (7)

where

c(k)2 (xi, xj) 6= c(i)1 (xi)c
(j)
1 (xj), (8)

because a choice of the coordinate pair (ξi, AFi ) is not unique. Accordingly, to fulfill the
constitutive requirement (4), the densities of admissible states F 3 ⊂ <3 should obey the
following scaling relations ∫

dVc3 ∼ ε
3−dH
0 LdH ,∫

dAic
(i)
2 ∼ ε

2−dA
0 LdA ,∫

dξi ∼ ε
1−αi
0 Lαi ,

(9)

where
∫

dξi =
∫

dxic
(i)
1 , the index i denotes a Cartesian direction and the scaling exponent

αi = dH − dA. From Equation (7), it is deduced that ξi = ε
1−αi
0 xαi

i , and so it holds that

xi 7→ ξi = ε0

(
xi
ε0

)αi

, (10)

whose geometrical interpretation is detailed in Figure 2, where the mapping F dH
3 7→ F 3

dH
is

sketched. From the above equations, it is deduced that

c(i)1 = αiε
1−αi
0 xαi−1

i (11)

where αi is the Hausdorff dimension of coordinates χi, such that αi = dH − dAi .

dV
(0)
F = c3dV

(0)
3 dVF = c3dV3

Fractal set

x1

x3

x2

xi 7→ ξi = ε1−α1
0 xαi

i

JdV
(0)
3 = dV3

Fractal continuum

ξ1

ξ3

ξ2

Figure 2. Geometrical interpretation of mapping of Menger sponge F3 into the fractal continuum F α

from the original to deformed configuration [39].

2.3. Conservation Laws for Fractal Continuum Flow

Within the fractal continuum approach, the conservation equations used for the model
flow of Newtonian or non-Newtonian fluids are as follows [38]: for the continuity equation,

∂ρc

∂t
= −divH(ρc~u) (12)

where the Hausdorff divergence is defined by

divH f = ξ1
∂ f1

∂x1
+ ξ2

∂ f2

∂x2
+ ξ3

∂ f3

∂x3
. (13)
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The equation of the balance of the energy density e(xi, t) in the fractal continuum flow
is given as

ρc

(
d
dt

)
e = σij∇H

j ui + ρc∇H
i ~q, (14)

where σij is the stress tensor, ~q = qin is the density of the heat flux, and the term ∇Hi
denotes the Hausdorff derivative (see [37,48]):

∇Hi f = lim
xi→x′i

f (x′i)− f (xi)

∆
(
x′i , xi

) =
1
αi

(
xi
ε0

)1−αi ∂

∂xi
f (15)

where ∂/∂xi means the conventional partial derivative. Meanwhile, the balance of the
density of the momentum is governed by(

d
dt

)
υk = fk + ρ−1

c ∇H
i σki, (16)

where fk is the density of the volume forces and

υi = αi

(
xi
ε0

)αi−1
ui. (17)

3. Differential Equations of Darcy’s Law for Fractal Continuum

This section is devoted to deducing the fractal Darcy’s law by applying the ideas
reviewed in the previous part.

Darcy’s law in the fractal continuum space is given in fractal coordinates ξi ∈ F α

and is analogous to the ordinary Darcy’s law given in Cartesian coordinates. Then, the
following expression is obtained:

qα = − kα1

µ

dp
dξ1

, (18)

where p represents pressure, ξ1 denotes the fractal length of the sample, and kα1 represents
the fractal permeability, which can be obtained using Equations (36) or (6) of Refs. [49,50],
respectively. When the porous matrix is of the classical Menger sponge type (where
dH = log 20/ log 3), the fractal permeability of porous media can be computed as
kα1(φξ1 = 0.3) = kξ1 λ−0.12, with φξ1 = (20/27)n = 3−(3−dH)n being the global poros-
ity and n = 1, 2, 3, . . . , ∞ is the iteration number of the Menger sponge [51]. In the case of a
core sample, the overall porosity is obtained with a criterion based on the fractal statistical
properties of porous media (see [52] and references therein).

The mapping of Equation (18) using fractal continuum calculus (F α-CC) from fractal
coordinates to Cartesian coordinates is carried out using Equations (10) and (17) in order to
generalize Darcy’s law as follows (see Figure 3):

qα1 = − kα1

µ
εα1−1

0
dp

dxα1
1

. (19)

It is worth noting that for the Hausdorff dimension α1 = dH − dA = 1 (in both
coordinates Cartesian and fractals, x1 and ξ1, respectively), Equation (19) takes the form
of the standard Darcy’s law given in Equation (1). Here, the cross-sectional area is in the
Cartesian x2x3-plane and fractal ξ2ξ3-plane.

The mechanical picture shown in Figure 3 exhibits the link between the pressure gradi-
ent and velocity by the fractal Darcy’s law model (19) in a porous media with heterogeneous
mechanical features, which correspond to values 0 < α1 ≤ 2.
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Figure 3. Seepage curves by fractal Darcy equation with different values of α1: the concave downward
curve for high-velocity Darcy fractal flow (0 < α1 < 1), the straight line for classical Darcian flow
(α = 1), and the concave upward curve for low-velocity Darcy fractal flow (1 < α1 < 2).

4. Theoretical Implementations and Discussions of Suggested Formulation

In this section, we show the validity of the developed model and the discussion of the
effectiveness of fractal continuum calculus on non-Darcian flow.

For the purpose of the model’s dependability evaluation (which was suggested in
Equation (19)), it is compared with both the experimental test carried out by [53] and the
fractional Darcy law introduced in [14]. The experimental results of the non-Darcian flow
of high velocity match the result of the fractal Darcy equation when α1 = 0.68, and it is
consistent with the numerical result of the Zhou–Yang fractional model as can be observed
in Figure 4, where the straight line represents the standard Darcian flow and the curved
lines are non-Darcian flow cases. At first glance, it can be seen in Figure 4 that the blue
line perfectly fits the behavior described by the experimental data (solid circle in black
color). On the other hand, in this particular case, our formulation is consistent with the
Zhou fractional model.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

·10−2

α = 0.6823

dp/dx

q

Experimental data

Darcyan flow

Fractional Darcian

Fractal Darcian

Figure 4. Darcy’s fractal flow versus experimental data [53] and fractional Darcy model suggested
in [14].
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Moreover, another application of the fractal Darcy’s equation is shown in Figure 5; it
is a non-Darcian flow of low velocity. Again, the flow behavior displayed by Equation (19),
in blue, is a good description of the experimental data (reported in Ref. [14]), which matches
with other non-Darcian models. For example, in this particular case, the blue curve is the
same as the one obtained using a fractional Darcy equation suggested by Chang–Sun (for
details, see Equation (2.9) in [54] and figures therein). However, it is easy to see that there is
a discrepancy between the experimental data and the results produced by the Chang–Sun
model and ours. Unfortunately, the mathematical models do not exactly describe the
experimental behavior; however, they do give a close description of the actual behavior of
the flow.

0 5 10 15 20 25
0

2

4

6

8

10

α = 1.42

Pressure gradient (dp/dxα
1 )

F
lo
w

v
el
o
ci
ty

(q
α
)

Experimental data

Fractal Darcian flow

Figure 5. Low-velocity Darcy fractal flow versus experimental data reported in Figure 5.c of [14] and
references therein.

In addition, a numerical analysis on the inverse of the Menger sponge was carried out
in order to describe the fluid flow through fractal porosity using the well-known fractal
parameters of the classical Menger sponge, and then the formulation suggested in this
work was applied. Figure 6 shows a non-Darcian flow of high velocity with α1 = 0.83.
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α = 1.00
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Figure 6. Fractal Darcy flow in the conventional Menger sponge with dH = log 20/ log 3, dimension
fractal of cross-sectional area dA = log 8/ log 3, and α1 = 0.83 versus standard Darcy flow.
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In this manuscript, it is argued that in addition to the fractal geometry of the porous
medium, its fractal topology must be considered, as a way of having a more complete
description of the heterogeneity of the medium. It is well-known that the Hausdorff
dimension tells us nothing about the fractal topology and it can be treated as the degree to
which a set “fills” the Euclidean space in which it is embedded. There are mathematical and
physical fractals with the same Hausdorff dimension and with different chemical, spectral,
or lacunarity dimensions, for example, the classical Weierstrass fractal, three-dimensional
Cantor dust, and Sierpinski carpet have dH = log 8/ log 3, whilst the von Koch curve and
two-dimensional Cantor dust have the same Hausdorff dimension dH = log 4/ log 3.

However, to our best knowledge, the non-homogeneous media can be quantifiably set
apart by this group of dimension numbers in order to further characterize a fractal set under
study. It is a straightforward matter to see that Equation (19) holds these aspects through
the Hausdorff and chemical dimensions, which are involved in the alpha parameters as
defined in Equation (4). We emphasize that the fractal permeability was out of the scope of
this work, because there are studies that delve into that topic, for example, Refs. [49,55,56].

In this regard, the physical significance of the fractal Darcy’s law refers to a theoretical
framework or mathematical relationship that generalizes Darcy’s law in order to describe
fluid flow through porous media that exhibit non-conventional characteristics. This could
potentially involve considering the complex and irregular nature of porous materials on
different scales and how it influences fluid flow behavior. One can more easily picture
the importance of a fractal description in terms of the relationship between fluid flow
and friction in two dimensions: a flow over a smooth horizontal surface (line) with a
no-slip boundary condition behaves very differently than a rough line (one can think of a
sawtooth or wavy line with zero mean as the simplest cases). The fractal dimensions give a
mathematical idea of the complexity of that boundary/line/case, even if on average (or
viewed from the distance) it is a straight line. One can extrapolate the concept to three
(or more) fractal dimensions and infer that their characteristics have a rich mathematical
behavior, from which the traditional Darcian flow is a particular case.

Another benefit of the continuous fractal approach used in this work is the value that
α1 in Equation (19) can be 0 < α1 < 2. Therefore, the Darcy fractal model can be applied
for high-velocity non-Darcian flow for 0 < α1 < 1 and for low-velocity non-Darcian flow
for 1 < α1 < 2.

5. Conclusions

The objective of the present work is to give a description of the non-Darcian flow
behavior by applying fractal continuum calculus. A fractal Darcy’s equation is suggested,
which is applicable for both high-velocity non-Darcian flow as sketched in Figure 4 and
low-velocity non-Darcian flow as is plotted in Figure 5.

When compared to experimental data, the information obtained from different models
as well as the one proposed here indicates that the flow models with local fractional
differential operators mentioned in this work are able to provide a better description of the
characteristics of the non-Darcian flow with higher precision and pliability.

The present model not only has a resemblance to the results acquired in models that
incorporate fractional geometry but also includes fractal geometry through the different
Hausdorff dimensions of the porous medium and fractal topology using its (connectivity)
chemical dimension, and consequently, it permits capturing the heterogeneity (with the
alpha parameter) of the porous medium in a single expression, which is called the fractal
Darcy’s law.

In addition, the discussion about the effectiveness of fractal continuum calculus shows
that fractal continuum models can be used to describe the non-Darcian flow in porous
media. It is noted that when the Hausdorff dimension αi of Cartesian coordinates xi ∈ E3

is the integer order (αi = 1), the conventional Darcy’s equation is obtained as a particular
case of the fractal Darcian model.
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On the other hand, the fractal continuum calculus framework can be used to model
complex problems in other areas of physics, for example, wave propagation in fractal
media, mechanical vibrations, and fracture mechanics, among others.
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