Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = footswitch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1159 KiB  
Article
Foot–Floor Contact Sequences: A Metric for Gait Assessment in Parkinson’s Disease after Deep Brain Stimulation
by Marco Ghislieri, Valentina Agostini, Laura Rizzi, Chiara Fronda, Marco Knaflitz and Michele Lanotte
Sensors 2024, 24(20), 6593; https://doi.org/10.3390/s24206593 - 13 Oct 2024
Cited by 2 | Viewed by 1918
Abstract
Digital gait monitoring is increasingly used to assess locomotion and fall risk. The aim of this work is to analyze the changes in the foot–floor contact sequences of Parkinson’s Disease (PD) patients in the year following the implantation of Deep Brain Stimulation (DBS). [...] Read more.
Digital gait monitoring is increasingly used to assess locomotion and fall risk. The aim of this work is to analyze the changes in the foot–floor contact sequences of Parkinson’s Disease (PD) patients in the year following the implantation of Deep Brain Stimulation (DBS). During their best-ON condition, 30 PD patients underwent gait analysis at baseline (T0), at 3 months after subthalamic nucleus DBS neurosurgery (T1), and at 12 months (T2) after subthalamic nucleus DBS neurosurgery. Thirty age-matched controls underwent gait analysis once. Each subject was equipped with bilateral foot-switches and a 5 min walk was recorded, including both straight-line and turnings. The walking speed, turning time, stride time variability, percentage of atypical gait cycles, stance, swing, and double support duration were estimated. Overall, the gait performance of PD patients improved after DBS, as also confirmed by the decrease in their UPDRS-III scores from 19.4 ± 1.8 to 10.2 ± 1.0 (T0 vs. T2) (p < 0.001). In straight-line walking, the percentages of atypical cycles of PD on the more affected side were 11.1 ± 1.5% (at T0), 3.1 ± 1.5% (at T1), and 5.1 ± 2.4% (at T2), while in controls it was 3.1 ± 1.3% (p < 0.0005). In turnings, this percentage was 13.7 ± 1.1% (at T0), 7.8 ± 1.1% (at T1), and 10.9 ± 1.8% (at T2), while in controls it was 8.1 ± 1.0% (p < 0.001). Therefore, in straight-line walking, the atypical cycles decreased by 72% at T1, and by 54% at T2 (with respect to baseline), while, in turnings, atypical cycles decreased by 43% at T1, and by 20% at T2. The percentage of atypical gait cycles proved an informative digital biomarker for quantifying PD gait changes after DBS, both in straight-line paths and turnings. Full article
(This article belongs to the Collection Sensors for Gait, Human Movement Analysis, and Health Monitoring)
Show Figures

Figure 1

16 pages, 2357 KiB  
Article
Atypical Gait Cycles in Parkinson’s Disease
by Marco Ghislieri, Valentina Agostini, Laura Rizzi, Marco Knaflitz and Michele Lanotte
Sensors 2021, 21(15), 5079; https://doi.org/10.3390/s21155079 - 27 Jul 2021
Cited by 12 | Viewed by 4203
Abstract
It is important to find objective biomarkers for evaluating gait in Parkinson’s Disease (PD), especially related to the foot and lower leg segments. Foot-switch signals, analyzed through Statistical Gait Analysis (SGA), allow the foot-floor contact sequence to be characterized during a walking session [...] Read more.
It is important to find objective biomarkers for evaluating gait in Parkinson’s Disease (PD), especially related to the foot and lower leg segments. Foot-switch signals, analyzed through Statistical Gait Analysis (SGA), allow the foot-floor contact sequence to be characterized during a walking session lasting five-minutes, which includes turnings. Gait parameters were compared between 20 PD patients and 20 age-matched controls. PDs showed similar straight-line speed, cadence, and double-support compared to controls, as well as typical gait-phase durations, except for a small decrease in the flat-foot contact duration (−4% of the gait cycle, p = 0.04). However, they showed a significant increase in atypical gait cycles (+42%, p = 0.006), during both walking straight and turning. A forefoot strike, instead of a “normal” heel strike, characterized the large majority of PD’s atypical cycles, whose total percentage was 25.4% on the most-affected and 15.5% on the least-affected side. Moreover, we found a strong correlation between the atypical cycles and the motor clinical score UPDRS-III (r = 0.91, p = 0.002), in the subset of PD patients showing an abnormal number of atypical cycles, while we found a moderate correlation (r = 0.60, p = 0.005), considering the whole PD population. Atypical cycles have proved to be a valid biomarker to quantify subtle gait dysfunctions in PD patients. Full article
(This article belongs to the Special Issue Portable Systems for Diagnostics and Monitoring Applications)
Show Figures

Figure 1

18 pages, 3968 KiB  
Article
Field Programmable Gate Array-Embedded Platform for Dynamic Muscle Fiber Conduction Velocity Monitoring
by Daniela De Venuto and Giovanni Mezzina
Sensors 2019, 19(20), 4594; https://doi.org/10.3390/s19204594 - 22 Oct 2019
Cited by 1 | Viewed by 3646
Abstract
This paper proposes a novel architecture of a wearable Field Programmable Gate Array (FPGA)-based platform to dynamically monitor Muscle Fiber Conduction Velocity (MFCV). The system uses a set of wireless sensors for the detection of muscular activation: four surface electromyography electrodes (EMGs) and [...] Read more.
This paper proposes a novel architecture of a wearable Field Programmable Gate Array (FPGA)-based platform to dynamically monitor Muscle Fiber Conduction Velocity (MFCV). The system uses a set of wireless sensors for the detection of muscular activation: four surface electromyography electrodes (EMGs) and two footswitches. The beginning of movement (trigger) is set by sensors (footswitches) detecting the feet position. The MFCV value extraction exploits an iterative algorithm, which compares two 1-bit digitized EMG signals. The EMG electrode positioning is ensured by a dedicated procedure. The architecture is implemented on FPGA board (Altera Cyclone V), which manages an external Bluetooth module for data transmission. The time spent for data elaboration is 63.5 ms ± 0.25 ms, matching real-time requirements. The FPGA-based MFCV estimator has been validated during regular walking and in the fatigue monitoring context. Six healthy subjects contributed to experimental validation. In the gait analysis, the subjects showed MFCV evaluation of about 7.6 m/s ± 0.36 m/s, i.e., <0.1 m/s, a typical value for healthy subjects. Furthermore, in agreement with current research methods in the field, in a fatigue evaluation context, the extracted data showed an MFCV descending trend with the increment of the muscular effort time (Rested: MFCV = 8.51 m/s; Tired: 4.60 m/s). Full article
(This article belongs to the Special Issue Advances in Sensors for Context-Aware, Mobile and Smart Healthcare)
Show Figures

Figure 1

15 pages, 3137 KiB  
Article
A Deep Learning Approach to EMG-Based Classification of Gait Phases during Level Ground Walking
by Christian Morbidoni, Alessandro Cucchiarelli, Sandro Fioretti and Francesco Di Nardo
Electronics 2019, 8(8), 894; https://doi.org/10.3390/electronics8080894 - 14 Aug 2019
Cited by 79 | Viewed by 8494
Abstract
Correctly identifying gait phases is a prerequisite to achieve a spatial/temporal characterization of muscular recruitment during walking. Recent approaches have addressed this issue by applying machine learning techniques to treadmill-walking data. We propose a deep learning approach for surface electromyographic (sEMG)-based classification of [...] Read more.
Correctly identifying gait phases is a prerequisite to achieve a spatial/temporal characterization of muscular recruitment during walking. Recent approaches have addressed this issue by applying machine learning techniques to treadmill-walking data. We propose a deep learning approach for surface electromyographic (sEMG)-based classification of stance/swing phases and prediction of the foot–floor-contact signal in more natural walking conditions (similar to everyday walking ones), overcoming constraints of a controlled environment, such as treadmill walking. To this aim, sEMG signals were acquired from eight lower-limb muscles in about 10.000 strides from 23 healthy adults during level ground walking, following an eight-shaped path including natural deceleration, reversing, curve, and acceleration. By means of an extensive evaluation, we show that using a multi layer perceptron to learn hidden features provides state of the art performances while avoiding features engineering. Results, indeed, showed an average classification accuracy of 94.9 for learned subjects and 93.4 for unlearned ones, while mean absolute difference ( ± S D ) between phase transitions timing predictions and footswitch data was 21.6 ms and 38.1 ms for heel-strike and toe off, respectively. The suitable performance achieved by the proposed method suggests that it could be successfully used to automatically classify gait phases and predict foot–floor-contact signal from sEMG signals during level ground walking. Full article
(This article belongs to the Special Issue Computational Intelligence in Healthcare)
Show Figures

Figure 1

18 pages, 2198 KiB  
Article
Knee Impedance Modulation to Control an Active Orthosis Using Insole Sensors
by Ana Cecilia Villa-Parra, Denis Delisle-Rodriguez, Jessica Souza Lima, Anselmo Frizera-Neto and Teodiano Bastos
Sensors 2017, 17(12), 2751; https://doi.org/10.3390/s17122751 - 28 Nov 2017
Cited by 41 | Viewed by 6981
Abstract
Robotic devices for rehabilitation and gait assistance have greatly advanced with the objective of improving both the mobility and quality of life of people with motion impairments. To encourage active participation of the user, the use of admittance control strategy is one of [...] Read more.
Robotic devices for rehabilitation and gait assistance have greatly advanced with the objective of improving both the mobility and quality of life of people with motion impairments. To encourage active participation of the user, the use of admittance control strategy is one of the most appropriate approaches, which requires methods for online adjustment of impedance components. Such approach is cited by the literature as a challenge to guaranteeing a suitable dynamic performance. This work proposes a method for online knee impedance modulation, which generates variable gains through the gait cycle according to the users’ anthropometric data and gait sub-phases recognized with footswitch signals. This approach was evaluated in an active knee orthosis with three variable gain patterns to obtain a suitable condition to implement a stance controller: two different gain patterns to support the knee in stance phase, and a third pattern for gait without knee support. The knee angle and torque were measured during the experimental protocol to compare both temporospatial parameters and kinematics data with other studies of gait with knee exoskeletons. The users rated scores related to their satisfaction with both the device and controller through QUEST questionnaires. Experimental results showed that the admittance controller proposed here offered knee support in 50% of the gait cycle, and the walking speed was not significantly different between the three gain patterns (p = 0.067). A positive effect of the controller on users regarding safety during gait was found with a score of 4 in a scale of 5. Therefore, the approach demonstrates good performance to adjust impedance components providing knee support in stance phase. Full article
(This article belongs to the Special Issue Assistance Robotics and Biosensors)
Show Figures

Figure 1

14 pages, 1849 KiB  
Article
A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults
by Valentina Agostini, Laura Gastaldi, Valeria Rosso, Marco Knaflitz and Shigeru Tadano
Sensors 2017, 17(10), 2406; https://doi.org/10.3390/s17102406 - 21 Oct 2017
Cited by 50 | Viewed by 7981
Abstract
Background: Wearable magneto-inertial sensors are being increasingly used to obtain human motion measurements out of the lab, although their performance in applications requiring high accuracy, such as gait analysis, are still a subject of debate. The aim of this work was to [...] Read more.
Background: Wearable magneto-inertial sensors are being increasingly used to obtain human motion measurements out of the lab, although their performance in applications requiring high accuracy, such as gait analysis, are still a subject of debate. The aim of this work was to validate a gait analysis system (H-Gait) based on magneto-inertial sensors, both in normal weight (NW) and overweight/obese (OW) subjects. The validation is performed against a reference multichannel recording system (STEP32), providing direct measurements of gait timings (through foot-switches) and joint angles in the sagittal plane (through electrogoniometers). Methods: Twenty-two young male subjects were recruited for the study (12 NW, 10 OW). After positioning body-fixed sensors of both systems, each subject was asked to walk, at a self-selected speed, over a 14-m straight path for 12 trials. Gait signals were recorded, at the same time, with the two systems. Spatio-temporal parameters, ankle, knee, and hip joint kinematics were extracted analyzing an average of 89 ± 13 gait cycles from each lower limb. Intraclass correlation coefficient and Bland-Altmann plots were used to compare H-Gait and STEP32 measurements. Changes in gait parameters and joint kinematics of OW with respect NW were also evaluated. Results: The two systems were highly consistent for cadence, while a lower agreement was found for the other spatio-temporal parameters. Ankle and knee joint kinematics is overall comparable. Joint ROMs values were slightly lower for H-Gait with respect to STEP32 for the ankle (by 1.9° for NW, and 1.6° for OW) and for the knee (by 4.1° for NW, and 1.8° for OW). More evident differences were found for hip joint, with ROMs values higher for H-Gait (by 6.8° for NW, and 9.5° for OW). NW and OW showed significant differences considering STEP32 (p = 0.0004), but not H-Gait (p = 0.06). In particular, overweight/obese subjects showed a higher cadence (55.0 vs. 52.3 strides/min) and a lower hip ROM (23.0° vs. 27.3°) than normal weight subjects. Conclusions: The two systems can be considered interchangeable for what concerns joint kinematics, except for the hip, where discrepancies were evidenced. Differences between normal and overweight/obese subjects were statistically significant using STEP32. The same tendency was observed using H-Gait. Full article
(This article belongs to the Special Issue Wearable and Ambient Sensors for Healthcare and Wellness Applications)
Show Figures

Figure 1

20 pages, 236 KiB  
Review
Gait Partitioning Methods: A Systematic Review
by Juri Taborri, Eduardo Palermo, Stefano Rossi and Paolo Cappa
Sensors 2016, 16(1), 66; https://doi.org/10.3390/s16010066 - 6 Jan 2016
Cited by 294 | Viewed by 16250
Abstract
In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as [...] Read more.
In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. Full article
(This article belongs to the Special Issue Wearable Sensors)
Back to TopTop