Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = flywheel subsystem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7095 KiB  
Article
Development of a Dual-Input Hybrid Wave–Current Ocean Energy System: Design, Fabrication, and Performance Evaluation
by Farooq Saeed, Tanvir M. Sayeed, Mohammed Abdul Hannan, Abdullah A. Baslamah, Aedh M. Alhassan, Turki K. Alarawi, Osama A. Alsaadi, Muhanad Y. Alharees and Sultan A. Alshehri
J. Mar. Sci. Eng. 2025, 13(8), 1435; https://doi.org/10.3390/jmse13081435 - 27 Jul 2025
Viewed by 412
Abstract
This study presents the design, fabrication, and performance assessment of a novel, small-scale (30–70 W), hybrid ocean energy system that captures energy from wave-induced heave motion using a point-absorber buoy and from ocean currents via a vertical axis water turbine (VAWT). Key innovations [...] Read more.
This study presents the design, fabrication, and performance assessment of a novel, small-scale (30–70 W), hybrid ocean energy system that captures energy from wave-induced heave motion using a point-absorber buoy and from ocean currents via a vertical axis water turbine (VAWT). Key innovations include a custom designed and built dual-rotor generator that accepts independent mechanical input from both subsystems without requiring complex mechanical coupling and a bi-directional mechanical motion rectifier with an overdrive. Numerical simulations using ANSYS AQWA (2024R2) and QBLADE(2.0.4) guided the design optimization of the buoy and turbine, respectively. Wave resource assessment for the Khobar coastline, Saudi Arabia, was conducted using both historical data and field measurements. The prototype was designed and built using readily available 3D-printed components, ensuring cost-effective construction. This mechanically simple system was tested in both laboratory and outdoor conditions. Results showed reliable operation and stable power generation under simultaneous wave and current input. The performance is comparable to that of existing hybrid ocean wave–current energy converters that employ more complex flywheel or dual degree-of-freedom systems. This work provides a validated pathway for low-cost, compact, and modular hybrid ocean energy systems suited for remote coastal applications or distributed marine sensing platforms. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

31 pages, 16330 KiB  
Article
Transient Power Stabilization in Marine Microgrids: Improved Droop Control and Feedforward Strategies for Heterogeneous Gas Turbines with Hybrid Energy Storage
by Zemin Ding, Yueming Li, Yongbao Liu and Youhong Yu
J. Mar. Sci. Eng. 2025, 13(4), 771; https://doi.org/10.3390/jmse13040771 - 12 Apr 2025
Cited by 2 | Viewed by 2286
Abstract
To address the complexity of power allocation in parallel operation systems combining single-shaft and split-shaft gas turbine generators, this paper proposes a coordinated power allocation strategy based on enhanced voltage droop control for marine power systems integrated with hybrid energy storage comprising flywheel [...] Read more.
To address the complexity of power allocation in parallel operation systems combining single-shaft and split-shaft gas turbine generators, this paper proposes a coordinated power allocation strategy based on enhanced voltage droop control for marine power systems integrated with hybrid energy storage comprising flywheel and battery subsystems. Furthermore, to mitigate significant power sharing deviations during transient/pulsed load conditions in shipboard application, a feedforward compensation strategy is developed. Simulation results demonstrate that the improved droop control maintains power sharing deviations below 3.5% across steady-state operations and gradual load variations, ensuring system stability and balanced power distribution. However, abrupt load changes induce over 20% deviations, compromising parallel operation reliability. The proposed feedforward compensation strategy effectively restricts deviations within 4% under specified transient and pulsed load scenarios, satisfying both parallel operation criteria and grid power quality requirements. Validation is performed on a parallel system comprising two distinct gas turbine configurations. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

20 pages, 4322 KiB  
Article
Research on Energy Management Technology of Photovoltaic-FESS-EV Load Microgrid System
by Yahong Xing, Wenping Qin, Haixiao Zhu, Kai Liu and Chengpeng Zhou
World Electr. Veh. J. 2024, 15(11), 508; https://doi.org/10.3390/wevj15110508 - 6 Nov 2024
Cited by 2 | Viewed by 951
Abstract
This study focuses on the development and implementation of coordinated control and energy management strategies for a photovoltaic–flywheel energy storage system (PV-FESS)-electric vehicle (EV) load microgrid with direct current (DC). A comprehensive PV-FESS microgrid system is constructed, comprising PV power generation, a flywheel [...] Read more.
This study focuses on the development and implementation of coordinated control and energy management strategies for a photovoltaic–flywheel energy storage system (PV-FESS)-electric vehicle (EV) load microgrid with direct current (DC). A comprehensive PV-FESS microgrid system is constructed, comprising PV power generation, a flywheel energy storage array, and electric vehicle loads. The research delves into the control strategies for each subsystem within the microgrid, investigating both steady-state operations and transitions between different states. A novel energy management strategy, centered on event-driven mode switching, is proposed to ensure the coordinated control and stable operation of the entire system. Based on the simulation results, the PV system cannot cope with the load demand power when it is increased to a maximum of 2800 W, the effectiveness of the individual control strategies, the coordinated control of the subsystems, and the overall energy management approach are confirmed. The main contribution of this research is the development of a coordinated control mechanism that integrates PV generation with FESS and EV loads, ensuring synchronized operation and enhanced stability of the microgrid. This work provides significant insights into optimizing energy distribution and minimizing losses within microgrid systems, thereby advancing the field of energy management in DC microgrids. Full article
Show Figures

Figure 1

17 pages, 15671 KiB  
Article
Full-Closed-Loop Time-Domain Integrated Modeling Method of Optical Satellite Flywheel Micro-Vibration
by Yang Yu, Xiaoxue Gong, Lei Zhang, Hongguang Jia and Ming Xuan
Appl. Sci. 2021, 11(3), 1328; https://doi.org/10.3390/app11031328 - 2 Feb 2021
Cited by 7 | Viewed by 3163
Abstract
Due to the micro-vibration of flywheels, the imaging quality of a high-resolution optical remote sensing satellite will be deteriorated, and the micro-vibration effect on the payload is complicated, so it is essential to establish a reasonable and accurate theoretical simulation model for it. [...] Read more.
Due to the micro-vibration of flywheels, the imaging quality of a high-resolution optical remote sensing satellite will be deteriorated, and the micro-vibration effect on the payload is complicated, so it is essential to establish a reasonable and accurate theoretical simulation model for it. This paper presents a method of full-closed-loop time-domain integrated modeling to estimate the impacts of micro-vibration generated by flywheels on optical satellites. The method consists of three parts. First, according to the satellites’ micro-vibration influence mechanism in orbit, this paper establishes a full-closed-loop model framework. The overall model input is the instructions received and the output is the image shift. Second, in order to meet the requirements of time-domain simulation, this paper proposes a time-domain vibration source subsystem model in the form of cosine harmonic superposition, and it integrates vibration source, structural, control, and optical subsystem models to create a full-closed-loop time-domain analysis model that can obtain the responses of micro-vibration in time and frequency domains. Lastly, the author designs a ground experiment and compares simulation results with experiment results. Compared with the ground experiment, frequency error is less than 0.4% at typical responses. Although the amplitude error is large at some typical responses, the mean root square error is less than 35%. Based on the data, the proposed integrated modeling method can be considered as an accurate methodology to predict the impacts of micro-vibration. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

19 pages, 6446 KiB  
Article
A Life Prediction Model of Flywheel Systems Using Stochastic Hybrid Automaton
by Yuehua Cheng, Bin Jiang, Xiaodong Han and Zhijun Wang
Electronics 2019, 8(11), 1236; https://doi.org/10.3390/electronics8111236 - 29 Oct 2019
Cited by 2 | Viewed by 2796
Abstract
This paper proposes a practical life prediction model for Flywheel Systems (FSs) using the Stochastic Hybrid Automaton (SHA) method. The reliability of motors and the performance degradation of bearings are considered key causes of the failure of FSs. The unit flywheel SHA model [...] Read more.
This paper proposes a practical life prediction model for Flywheel Systems (FSs) using the Stochastic Hybrid Automaton (SHA) method. The reliability of motors and the performance degradation of bearings are considered key causes of the failure of FSs. The unit flywheel SHA model is established for the failure mechanism, considering burst failure of motors and the accumulated performance degradation of bearings. This prediction model also describes the dynamic relation of lifetime with the configurations of FSs, work modes, and running environments. Monte Carlo simulation results demonstrate that the life distributions of FSs are quite different if the spacecrafts run in various orbits or with different configurations, or under changed work modes. The proposed method provides an engineering reference and guidance for the scheme design and in-orbit mission planning of FSs. Full article
(This article belongs to the Special Issue Fault Detection and Diagnosis of Intelligent Mechatronic Systems)
Show Figures

Figure 1

Back to TopTop