Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = flywheel energy storage (FES)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3366 KiB  
Review
An Overview of the R&D of Flywheel Energy Storage Technologies in China
by Xingjian Dai, Xiaoting Ma, Dongxu Hu, Jibing Duan and Haisheng Chen
Energies 2024, 17(22), 5531; https://doi.org/10.3390/en17225531 - 5 Nov 2024
Cited by 5 | Viewed by 3039
Abstract
The literature written in Chinese mainly and in English with a small amount is reviewed to obtain the overall status of flywheel energy storage technologies in China. The theoretical exploration of flywheel energy storage (FES) started in the 1980s in China. The experimental [...] Read more.
The literature written in Chinese mainly and in English with a small amount is reviewed to obtain the overall status of flywheel energy storage technologies in China. The theoretical exploration of flywheel energy storage (FES) started in the 1980s in China. The experimental FES system and its components, such as the flywheel, motor/generator, bearing, and power electronic devices, were researched around thirty years ago. About twenty organizations devote themselves to the R&D of FES technology, which is developing from theoretical and laboratory research to the stage of engineering demonstration and commercial application. After the research and accumulation in the past 30 years, the initial FES products were developed by some companies around 10 years ago. Today, the overall technical level of China’s flywheel energy storage is no longer lagging behind that of Western advanced countries that started FES R&D in the 1970s. The reported maximum tip speed of the new 2D woven fabric composite flywheel arrived at 900 m/s in the spin test. A steel alloy flywheel with an energy storage capacity of 125 kWh and a composite flywheel with an energy storage capacity of 10 kWh have been successfully developed. Permanent magnet (PM) motors with power of 250–1000 kW were designed, manufactured, and tested in many FES assemblies. The lower loss is carried out through innovative stator and rotor configuration, optimizing magnetic flux and winding arrangement for harmonic magnetic field suppression. Permanent magnetic bearings with high load ability up to 50–100 kN were developed both for a 1000 kW/16.7 kWh flywheel used for the drilling practice application in hybrid power of an oil well drilling rig and for 630 kW/125 kWh flywheels used in the 22 MW flywheel array applied to the flywheel and thermal power joint frequency modulation demonstration project. It is expected that the FES demonstration application power stations with a total cumulative capacity of 300 MW will be built in the next five years. Full article
(This article belongs to the Special Issue Flywheel Energy Storage Systems and Applications Ⅱ)
Show Figures

Figure 1

27 pages, 8980 KiB  
Article
Charging–Discharging Control Strategy for a Flywheel Array Energy Storage System Based on the Equal Incremental Principle
by Changli Shi, Tongzhen Wei, Xisheng Tang, Long Zhou and Tongshuo Zhang
Energies 2019, 12(15), 2844; https://doi.org/10.3390/en12152844 - 24 Jul 2019
Cited by 21 | Viewed by 3258
Abstract
The widely used flywheel energy storage (FES) system has such advantages as high power density, no environment pollution, a long service life, a wide operating temperature range, and unlimited charging–discharging times. The flywheel array energy storage system (FAESS), which includes the multiple standardized [...] Read more.
The widely used flywheel energy storage (FES) system has such advantages as high power density, no environment pollution, a long service life, a wide operating temperature range, and unlimited charging–discharging times. The flywheel array energy storage system (FAESS), which includes the multiple standardized flywheel energy storage unit (FESU), is an effective solution for obtaining large capacity and high-power energy storage. In this paper, the strategy for coordinating and controlling the charging–discharging of the FAESS is studied in depth. Firstly, a deep analysis is conducted on the loss generated during the charging–discharging process of the FESU. The results indicate that the loss is related to the charging–discharging of power. To solve the problems of over-charging, over-discharging, and overcurrent caused by traditional charging–discharging control strategies, this paper proposes a charging–discharging coordination control strategy based on the equal incremental principle (EIP). This strategy aims to minimize the total loss and establish a mathematical model of optimal coordination control with the constraints of total charging–discharging power, rated power limit, over-charging, over-discharging, and overcurrent. Based on the EIP, the optimal distribution scheme of power charging–discharging is determined. Secondly, this paper gives the specific implementation scheme of the optimal coordinated control strategy. Lastly, the charging–discharging coordinated control strategy is verified by examples. The results show that the coordinated control strategy can effectively reduce the loss during the charging–discharging process and can prevent over-charging, over-discharging, and overcurrent of the system. Overall, it has a better control effect than the existing charging–discharging control strategies. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

18 pages, 8144 KiB  
Article
Analysis of the Peak Load Leveling Mode of a Hybrid Power System with Flywheel Energy Storage in Oil Drilling Rig
by Xingjian Dai, Kunpeng Wei and Xiaozhang Zhang
Energies 2019, 12(4), 606; https://doi.org/10.3390/en12040606 - 14 Feb 2019
Cited by 14 | Viewed by 6014
Abstract
The load frequently oscillates in large amplitude like pulses when the draw-works lift or lower in the oil well drilling rig, and that makes the diesel engine run uneconomically. A new solution for the pulse load problem is to add a motor/generator set [...] Read more.
The load frequently oscillates in large amplitude like pulses when the draw-works lift or lower in the oil well drilling rig, and that makes the diesel engine run uneconomically. A new solution for the pulse load problem is to add a motor/generator set and a flywheel energy storage (FES) unit to the diesel engine mechanical drive system to form a hybrid power system with energy storage. The storage capacity of the power and energy, and the charging-discharging operation modes are discussed for the first time. The engine power output in frequent fluctuation was measured in the oil well drilling engineering practice. The configuration and the theoretical model of the hybrid power system with energy storage and peak load leveling were established. Furthermore, 1% to 12% saving of fuel is possible for the case of single engine in the load leveling running mode compared to bi-engines in a traditional running mode for the peak load between 900 to 1200 kW and the valley load between 200 to 600 kW. The experimental verification of the load leveling with FES confirmed that the diesel engine worked more smoothly with less smoke emission. In addition, 5% to 10% more fuel was consumed in the load leveling test compared to the traditional running mode with the drive-by 800 kW diesel engine. However, 21% fuel saving was obtained in the load leveling test with the drive-by 400 kW diesel generator. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

22 pages, 4432 KiB  
Article
Analysis of a Shaftless Semi-Hard Magnetic Material Flywheel on Radial Hysteresis Self-Bearing Drives
by Salvatore Circosta, Angelo Bonfitto, Christopher Lusty, Patrick Keogh, Nicola Amati and Andrea Tonoli
Actuators 2018, 7(4), 87; https://doi.org/10.3390/act7040087 - 10 Dec 2018
Cited by 10 | Viewed by 8710
Abstract
Flywheel Energy Storage Systems are interesting solutions for energy storage, featuring advantageous characteristics when compared to other technologies. This has motivated research effort focusing mainly on cost aspects, system reliability and energy density improvement. In this context, a novel shaftless outer-rotor layout is [...] Read more.
Flywheel Energy Storage Systems are interesting solutions for energy storage, featuring advantageous characteristics when compared to other technologies. This has motivated research effort focusing mainly on cost aspects, system reliability and energy density improvement. In this context, a novel shaftless outer-rotor layout is proposed. It features a semi-hard magnetic FeCrCo 48/5 rotor coupled with two bearingless hysteresis drives. The novelty lies in the use of the semi-hard magnetic material, lending the proposed layout advantageous features thanks to its elevated mechanical strength and magnetic properties that enable the use of bearingless hysteresis drives. The paper presents a study of the proposed layout and an assessment of its energetic features. It also focuses on the modeling of the radial magnetic suspension, where the electromagnets providing the levitating forces are modeled through a one-dimensional approach. The Jiles–Atherton model is used to describe the magnetic hysteresis of the rotor material. The proposed flywheel features a mass of 61.2 kg, a storage capability of 600 Wh at the maximum speed of 18,000 rpm and achieves an energy density of 9.8 Wh/kg. The performance of the magnetic suspension is demonstrated to be satisfactory and the influence of the hysteresis of the rotor material is highlighted. Full article
(This article belongs to the Special Issue Magnetic Bearing Actuators)
Show Figures

Figure 1

18 pages, 7983 KiB  
Article
Reluctance Machine for a Hollow Cylinder Flywheel
by Magnus Hedlund, Tobias Kamf, Juan De Santiago, Johan Abrahamsson and Hans Bernhoff
Energies 2017, 10(3), 316; https://doi.org/10.3390/en10030316 - 7 Mar 2017
Cited by 4 | Viewed by 8490
Abstract
A hollow cylinder flywheel rotor with a novel outer rotor switched reluctance machine (SRM) mounted on the interior rim is presented, with measurements, numerical analysis and analytical models. Practical experiences from the construction process are also discussed. The flywheel rotor does not have [...] Read more.
A hollow cylinder flywheel rotor with a novel outer rotor switched reluctance machine (SRM) mounted on the interior rim is presented, with measurements, numerical analysis and analytical models. Practical experiences from the construction process are also discussed. The flywheel rotor does not have a shaft and spokes and is predicted to store 181 Wh / kg at ultimate tensile strength (UTS) according to simulations. The novel SRM is an axial flux machine, chosen due to its robustness and tolerance for high strain. The computed maximum tip speed of the motor at UTS is 1050 m / s . A small-scale proof-of-concept electric machine prototype has been constructed, and the machine inductance has been estimated from measurements of voltage and current and compared against results from analytical models and finite element analysis (FEA). The prototype measurements were used to simulate operation during maximal speed for a comparison towards other high-speed electric machines, in terms of tip speed and power. The mechanical design of the flywheel was performed with an analytical formulation assuming planar stress in concentric shells of orthotropic (unidirectionally circumferentially wound) carbon composites. The analytical approach was verified with 3D FEA in terms of stress and strain. Full article
(This article belongs to the Special Issue Electric Machines and Drives for Renewable Energy Harvesting)
Show Figures

Figure 1

16 pages, 1004 KiB  
Article
A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control
by Thai-Thanh Nguyen, Hyeong-Jun Yoo and Hak-Man Kim
Energies 2015, 8(6), 5074-5089; https://doi.org/10.3390/en8065074 - 1 Jun 2015
Cited by 29 | Viewed by 11733
Abstract
Microgrids are eco-friendly power systems because they use renewable sources such as solar and wind power as the main power source. However, the stochastic nature of wind and solar power is a considerable challenge for the efficient operation of microgrids. Microgrid operations have [...] Read more.
Microgrids are eco-friendly power systems because they use renewable sources such as solar and wind power as the main power source. However, the stochastic nature of wind and solar power is a considerable challenge for the efficient operation of microgrids. Microgrid operations have to satisfy quality requirements in terms of the frequency and voltage. To overcome these problems, energy storage systems for short- and long-term storage are used with microgrids. Recently, the use of short-term energy storage systems such as flywheels has attracted significant interest as a potential solution to this problem. Conventional flywheel energy storage systems exhibit only one control mode during operation: either smoothing wind power control or frequency control. In this paper, we propose a new flywheel energy storage system based on a doubly fed induction machine and a battery for use with microgrids. The new flywheel energy storage system can be used not only to mitigate wind power fluctuations, but also to control the frequency as well as the voltage of the microgrid during islanded operation. The performance of the proposed flywheel energy storage system is investigated through various simulations using MATLAB/Simulink software. In addition, a conventional flywheel energy storage system based on a doubly fed induction machine is simulated and its performance compared with that of the proposed one. Full article
(This article belongs to the Special Issue Microgrids)
Show Figures

Figure 1

22 pages, 831 KiB  
Article
Research on the Torque and Back EMF Performance of a High Speed PMSM Used for Flywheel Energy Storage
by Jing Zhao, Zhongxin Gu, Bin Li, Xiangdong Liu, Xiaobei Li and Zhen Chen
Energies 2015, 8(4), 2867-2888; https://doi.org/10.3390/en8042867 - 15 Apr 2015
Cited by 16 | Viewed by 11272
Abstract
Due to advantages such as high energy density, high power density, rapid charge and discharge, high cyclic-life, and environmentally friendly, flywheel energy storage systems (FESs) are widely used in various fields. However, the performance of FES systems depends on the performance of a [...] Read more.
Due to advantages such as high energy density, high power density, rapid charge and discharge, high cyclic-life, and environmentally friendly, flywheel energy storage systems (FESs) are widely used in various fields. However, the performance of FES systems depends on the performance of a high speed machine, therefore, the design and optimization of a high efficiency and high power density machine are very crucial to improve the performance of the whole FES system. In this paper, a high speed permanent-magnet synchronous machine (PMSM) is researched. Considering the requirement of low torque ripple in low speed and loss caused by back electromotive force (EMF) harmonics, the electromagnetic performance is improved from points of view of slot/pole matching, magnetic-pole embrace with the finite element method (FEM). Furthermore, the magnetic-pole eccentricity, the slot opening, the thickness of PM and air-gap length are also optimized with Taguchi method. The electromagnetic performance, such as torque ripple, cogging torque, average torque and back EMF wave are much improved after optimization. Finally, experiments are carried out to verify the calculated results. Full article
Show Figures

Figure 1

Back to TopTop