Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = flucarbazone-sodium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2094 KiB  
Article
Distribution and Mechanism of Japanese Brome (Bromus japonicus) Resistance to ALS-Inhibiting Herbicides in China
by Linzhi Bai, Xiangju Li, Xiaotong Guo, Jingchao Chen, Haiyan Yu and Hailan Cui
Plants 2024, 13(8), 1139; https://doi.org/10.3390/plants13081139 - 19 Apr 2024
Cited by 2 | Viewed by 1528
Abstract
Bromus japonicus is a common monocot weed that occurs in major winter wheat fields in the Huang–Huai–Hai region of China. Pyroxsulam is a highly efficient and safe acetolactate synthase (ALS)-inhibiting herbicide that is widely used to control common weeds in wheat fields. However, [...] Read more.
Bromus japonicus is a common monocot weed that occurs in major winter wheat fields in the Huang–Huai–Hai region of China. Pyroxsulam is a highly efficient and safe acetolactate synthase (ALS)-inhibiting herbicide that is widely used to control common weeds in wheat fields. However, B. japonicus populations in China have evolved resistance to pyroxsulam by different mutations in the ALS gene. To understand the resistance distribution, target-site resistance mechanisms, and cross-resistance patterns, 208 B. japonicus populations were collected from eight provinces. In the resistant population screening experiment, 59 populations from six provinces showed different resistance levels to pyroxsulam compared with the susceptible population, of which 17 B. japonicus populations with moderate or high levels of resistance to pyroxsulam were mainly from the Hebei (4), Shandong (4) and Shanxi (9) Provinces. Some resistant populations were selected to investigate the target site-resistance mechanism to the ALS-inhibiting herbicide pyroxsulam. Three pairs of primers were designed to amplify the ALS sequence, which was assembled into the complete ALS sequence with a length of 1932 bp. DNA sequencing of ALS revealed that four different ALS mutations (Pro-197-Ser, Pro-197-Thr, Pro-197-Phe and Asp-376-Glu) were found in 17 moderately or highly resistant populations. Subsequently, five resistant populations, QM21-41 with Pro-197-Ser, QM20-8 with Pro-197-Thr and Pro-197-Phe, and QM21-72, QM21-76 and QM21-79 with Asp-376-Glu mutations in ALS genes, were selected to characterize their cross-resistance patterns to ALS inhibitors. The QM21-41, QM20-8, QM21-72, QM21-76 and QM21-79 populations showed broad-spectrum cross-resistance to pyroxsulam, mesosulfuron–methyl and flucarbazone–sodium. This study is the first to report evolving cross-resistance to ALS-inhibiting herbicides due to Pro-197-Phe mutations in B. japonicus. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

11 pages, 3691 KiB  
Brief Report
Generation of Herbicide-Resistant Soybean by Base Editing
by Tao Wei, Linjian Jiang, Xiang You, Pengyu Ma, Zhen Xi and Ning Ning Wang
Biology 2023, 12(5), 741; https://doi.org/10.3390/biology12050741 - 19 May 2023
Cited by 12 | Viewed by 3822
Abstract
Weeds cause the largest yield loss in soybean production. The development of herbicide-resistant soybean germplasm is of great significance for weed control and yield improvement. In this study, we used the cytosine base editor (BE3) to develop novel herbicide-resistant soybean. We have successfully [...] Read more.
Weeds cause the largest yield loss in soybean production. The development of herbicide-resistant soybean germplasm is of great significance for weed control and yield improvement. In this study, we used the cytosine base editor (BE3) to develop novel herbicide-resistant soybean. We have successfully introduced base substitutions in GmAHAS3 and GmAHAS4 and obtained a heritable transgene-free soybean with homozygous P180S mutation in GmAHAS4. The GmAHAS4 P180S mutants have apparent resistance to chlorsulfuron, flucarbazone-sodium, and flumetsulam. In particular, the resistance to chlorsulfuron was more than 100 times that of with wild type TL-1. The agronomic performance of the GmAHAS4 P180S mutants showed no significant differences to TL-1 under natural growth conditions. In addition, we developed allele-specific PCR markers for the GmAHAS4 P180S mutants, which can easily discriminate homozygous, heterozygous mutants, and wild-type plants. This study demonstrates a feasible and effective way to generate herbicide-resistant soybean by using CRISPR/Cas9-mediated base editing. Full article
(This article belongs to the Special Issue Current Advances in Weed Biology, Ecology and Management)
Show Figures

Figure 1

14 pages, 4295 KiB  
Article
Cytochrome P450 BsCYP99A44 and BsCYP704A177 Confer Metabolic Resistance to ALS Herbicides in Beckmannia syzigachne
by Shuang Bai, Mengjie Yin, Qinghao Lyu, Bo Jiang and Lingxu Li
Int. J. Mol. Sci. 2022, 23(20), 12175; https://doi.org/10.3390/ijms232012175 - 12 Oct 2022
Cited by 22 | Viewed by 2627
Abstract
Beckmannia syzigachne is a noxious grassy weed that infests wheat fields in China. Previously, we identified that mesosulfuron-methyl resistance in a B. syzigachne population (R, SD04) was conferred by non-target resistance, such as cytochrome P450 mixed-function oxidases (P450s)-based metabolism. RNA sequencing and real-time [...] Read more.
Beckmannia syzigachne is a noxious grassy weed that infests wheat fields in China. Previously, we identified that mesosulfuron-methyl resistance in a B. syzigachne population (R, SD04) was conferred by non-target resistance, such as cytochrome P450 mixed-function oxidases (P450s)-based metabolism. RNA sequencing and real-time PCR (qRT-PCR) were used to discover potential P450s-resistant-related genes. Five cytochrome P450s (CYP704A177, CYP96B84, CYP71D7, CYP93A1, and CYP99A44) were found to be highly expressed in R plants. In this study, CYP99A44 and CYP704A177 were cloned from B. syzigachne and transferred into Arabidopsis thaliana to test the sensitivity of Arabidopsis with and without P450s genes to mesosulfuron-methyl and other acetolactate synthase (ALS)-inhibiting herbicides. Transgenic Arabidopsis overexpressing CYP99A44 became resistant to the sulfonylurea herbicide mesosulfuron-methyl, but showed no resistance to pyroxsulam, imazethapyr, flucarbazone, and bispyribac-sodium. Notably, those overexpressing CYP704A177 showed resistance to pyroxsulam and bispyribac-sodium, but not to mesosulfuron-methyl, imazethapyr, and flucarbazone. These results indicated that B. syzigachne and transgenic Arabidopsis displayed different cross-resistance patterns to ALS-inhibiting herbicides. Subcellular localization revealed that CYP99A44 and CYP704A177 protein were located in the endoplasmic reticulum. Furthermore, these results clearly indicated that CYP99A44-mediated mesosulfuron-methyl resistance in B. syzigachne and CYP704A177 may be involved in B. syzigachne cross-resistance to pyroxsulam and bispyribac-sodium. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

10 pages, 2769 KiB  
Brief Report
Pro-197-Ser Mutation and Cytochrome P450-Mediated Metabolism Conferring Resistance to Flucarbazone-Sodium in Bromus japonicus
by Yuning Lan, Xinxin Zhou, Shenyuan Lin, Yi Cao, Shouhui Wei, Hongjuan Huang, Wenyu Li and Zhaofeng Huang
Plants 2022, 11(13), 1641; https://doi.org/10.3390/plants11131641 - 21 Jun 2022
Cited by 16 | Viewed by 2455
Abstract
In crop fields, resistance to acetolactate synthase (ALS)-inhibiting herbicides found in many troublesome weed species, including Bromus japonicus Thunb, is a worldwide problem. In particular, the development of herbicide resistance in B. japonicus is a severe threat to wheat production in China. The [...] Read more.
In crop fields, resistance to acetolactate synthase (ALS)-inhibiting herbicides found in many troublesome weed species, including Bromus japonicus Thunb, is a worldwide problem. In particular, the development of herbicide resistance in B. japonicus is a severe threat to wheat production in China. The purpose of this research was to investigate the physiological and molecular basis of B. japonicus resistance to flucarbazone-sodium. Dose-response analysis demonstrated that, compared with the susceptible B. japonicus (S) population, the resistant (R) population exhibited a 120-fold increase in flucarbazone-sodium resistance. Nucleotide sequence alignment of the ALS gene indicated that the Pro-197-Ser mutation in ALS was associated with resistance to flucarbazone-sodium in the R population. The results of a malathion pretreatment study showed that B. japonicus might also have remarkable cytochrome P450 monooxygenase (P450)-mediated metabolic resistance. This is the first report of a Pro-197-Ser mutation and P450-mediated metabolism conferring resistance to flucarbazone-sodium in B. japonicus. Full article
Show Figures

Figure 1

Back to TopTop