Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = flavan-3-ol unit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2044 KiB  
Article
Development of UHPLC-Q-Exactive Orbitrap/MS Technique for Determination of Proanthocyanidins (PAs) Monomer Composition Content in Persimmon
by Xianyang Zhao, Da Ren, Rui Jin, Wenxing Chen, Liqing Xu, Dayong Guo, Qinglin Zhang and Zhengrong Luo
Plants 2024, 13(11), 1440; https://doi.org/10.3390/plants13111440 - 22 May 2024
Cited by 2 | Viewed by 1868
Abstract
The main units of persimmon proanthocyanidins (PAs) are composed of flavan-3-ols including epigallocatechin gallate (EGCG) and gallocatechin gallate (GCG). Precise quantification of GCG is challenging due to its trace amounts in persimmon. In this study, to establish the optimal UHPLC-Q-Exactive Orbitrap/MS technique for [...] Read more.
The main units of persimmon proanthocyanidins (PAs) are composed of flavan-3-ols including epigallocatechin gallate (EGCG) and gallocatechin gallate (GCG). Precise quantification of GCG is challenging due to its trace amounts in persimmon. In this study, to establish the optimal UHPLC-Q-Exactive Orbitrap/MS technique for the determination of PAs monomer composition in persimmon fruit flesh of different astringency types, mass spectrometry and chromatographic conditions were optimized. The results showed that when operating in negative ion mode, using a T3 chromatographic column (a type of C18 column with high-strength silica), acetonitrile as the organic phase, a 0.1% mobile phase acid content, and a mobile phase flow rate of 0.2 mL/min, the chromatographic peak shape and resolution of the PAs monomer composition improved. Additionally, there was no tailing phenomenon observed in the chromatographic peaks. At the same time, the intra-day and inter-day precision, stability, and recovery of the procedure were good. The relative standard deviation (RSD) of stability was less than 5%. The intra-day precision was in the range of 1.14% to 2.36%, and the inter-day precision ranged from 1.03% to 2.92%, both of which were less than 5%. The recovery rate ranged from 94.43% to 98.59% with an RSD less than 5%. The results showed that the UHPLC-Q-Exactive Orbitrap/MS technique established in this study can not only be used for the quantification of EGCG and GCG in persimmon fruit flesh but also be suitable for analyzing other PAs monomer compositions, providing robust support for the related research on persimmon PAs. Full article
(This article belongs to the Special Issue Phytochemical Analysis and Metabolic Profiling in Plants)
Show Figures

Figure 1

17 pages, 1408 KiB  
Article
Effect of Sequential Fermentation with Lachancea thermotolerans/S. cerevisiae on Aromatic and Flavonoid Profiles of Plavac Mali Wine
by Ana Mucalo, Irena Budić-Leto and Goran Zdunić
Foods 2023, 12(9), 1912; https://doi.org/10.3390/foods12091912 - 7 May 2023
Cited by 7 | Viewed by 2694
Abstract
In this study, the effects of sequential fermentation of Lachancea thermotolerans/S. cerevisiae on the production of Plavac Mali wines were investigated in comparison with the commonly used inoculation of the commercial Saccharomyces cerevisiae strain and spontaneous fermentation. A total of 113 [...] Read more.
In this study, the effects of sequential fermentation of Lachancea thermotolerans/S. cerevisiae on the production of Plavac Mali wines were investigated in comparison with the commonly used inoculation of the commercial Saccharomyces cerevisiae strain and spontaneous fermentation. A total of 113 aroma compounds and 35 polyphenolic compounds were analyzed. Sequential inoculation resulted in a decrease in alcohol content and pH (up to 0.3% v/v and 0.12 units, respectively) and an increase in total acidity (0.6 g/L, expressed as tartaric acid). The wines produced by spontaneous fermentation exhibited the greatest diversity of volatile compounds and the highest concentration of C13 norisoprenoids, lactones, and other compounds. These wines exhibited maximum hydroxycinnamic acids, prodelphinidin monomer units, epigallocatechin, B1, B3, and B4 dimers, and total flavan-3-ols. Sequential inoculation decreased the content of the aromas and polyphenols in the wines. The practical significance of this procedure lies in the selective effect on aroma compounds, the decrease in green aromas, undetectable volatile phenols, and the decrease in bitter and astringent compounds such as gallic acid, flavan-3-ol monomers (catechin and epicatechin), and dimers (B1, B2, B3, and B4). This work demonstrates the potential of sequential and spontaneous fermentation to improve the aromatic characteristics and overall quality of Plavac Mali wines. Full article
(This article belongs to the Special Issue The Chemistry of Wine—from Vine to the Glass)
Show Figures

Figure 1

15 pages, 5273 KiB  
Article
Evolution of Seed-Soluble and Insoluble Tannins during Grape Berry Maturation
by Jingjing Wang, Xuechen Yao, Nongyu Xia, Qi Sun, Changqing Duan and Qiuhong Pan
Molecules 2023, 28(7), 3050; https://doi.org/10.3390/molecules28073050 - 29 Mar 2023
Cited by 8 | Viewed by 2791
Abstract
Condensed tannins (CT) in wine are derived from the seeds and skins of grapes, and their composition and content contribute to the bitterness/astringency characteristics and ageing potential of the wine. Global warming has accelerated the ripening process of grape berries, making them out [...] Read more.
Condensed tannins (CT) in wine are derived from the seeds and skins of grapes, and their composition and content contribute to the bitterness/astringency characteristics and ageing potential of the wine. Global warming has accelerated the ripening process of grape berries, making them out of sync with seed ripening. To understand the influence of berry ripening on the seed CT composition and content, we analyzed the changes in the soluble and insoluble CT in the seeds of ‘Cabernet Sauvignon’ grapes from two vineyards over two years. The results showed that the seed-soluble CT presented a slight downward trend in fluctuation during grape berry development, while the insoluble CT increased continuously before the véraison and remained at a high level afterwards. Relatively speaking, a lower sugar increment in developing grape berries favored the conversion of seed CT towards a higher degree of polymerization. The terminal unit of soluble CT was dominated by epigallocatechin gallate, the content of which decreased as the seeds matured. It is suggested that the seeds should be fully matured to reduce this bitter component in tannins. This study provides a reference for us to control the grape ripening process and produce high-quality grapes for wine making. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

20 pages, 315 KiB  
Article
Antioxidants Such as Flavonoids and Carotenoids in the Diet of Bogor, Indonesia Residents
by Nuri Andarwulan, Niken Cahyarani Puspita, Saraswati and Dominika Średnicka-Tober
Antioxidants 2021, 10(4), 587; https://doi.org/10.3390/antiox10040587 - 11 Apr 2021
Cited by 26 | Viewed by 3319
Abstract
Due to the strong antioxidant activity of flavonoids and carotenoids, daily consumption of these bioactive compounds has the potential for reducing the risk of many chronic and degenerative diseases caused by or contributed to by oxidative stress. Currently, the available research results related [...] Read more.
Due to the strong antioxidant activity of flavonoids and carotenoids, daily consumption of these bioactive compounds has the potential for reducing the risk of many chronic and degenerative diseases caused by or contributed to by oxidative stress. Currently, the available research results related to the flavonoid and carotenoid intake in Asian countries are very limited, especially for Indonesian population. The present study was conducted in Bogor City and Bogor District, West Java, Indonesia. Food consumption data was obtained through the food frequency questionnaire (FFQ) method, involving 200 respondents aged 25–65 years old. Flavonoids and carotenoids contents of the consumed food items were determined by referring to the databases developed by the United States Department of Agriculture (USDA), scientific journals, and calculation based on the recipes recorded in the survey. The total flavonoid intake of Bogor adults was estimated as 149.5 mg/day, consisting of 49.4% isoflavones, 24.0% flavonols, 9.4% flavanones, 7.0% flavan-3-ols, 6.0% flavones, and 4.2% anthocyanidins, and was contributed to mainly by legumes (70.7%), vegetables (10.1%), and fruits (7.3%). At the same time, the estimated total carotenoid intake reached 7.6 mg/day, and was contributed to mainly by vegetables (53.9%), fruits (20.2%), and snacks (14.4%), with β-carotene consumed in the highest proportion (49.9%), followed by lycopene (19.9%), lutein and zeaxanthin (13.5%), α-carotene (6.9%), and β-cryptoxanthin (2.6%). The effects of different respondents’ characteristics, such as area of residence (city vs. district), gender (male vs. female), and age (25–40, 41–55, and 56–65 years old) on the flavonoid and carotenoid intake varied widely, due to the differences in the overall consumption patterns of the respective respondents’ groups. Full article
Show Figures

Graphical abstract

12 pages, 1574 KiB  
Article
Efficient Concentration of Functional Polyphenols Using Their Interaction with Gelatin
by Mizuki Hirai, Ryo Kobori, Ryo Doge, Issei Tsuji and Akiko Saito
Foods 2021, 10(4), 698; https://doi.org/10.3390/foods10040698 - 25 Mar 2021
Cited by 5 | Viewed by 2256
Abstract
Among polyphenol compounds, the flavan-3-ol structure, which is the basic unit of green tea catechins and the galloyl groups contained in green tea catechins are known to exhibit various functions. In this paper, we discuss how to concentrate highly functional polyphenol compounds by [...] Read more.
Among polyphenol compounds, the flavan-3-ol structure, which is the basic unit of green tea catechins and the galloyl groups contained in green tea catechins are known to exhibit various functions. In this paper, we discuss how to concentrate highly functional polyphenol compounds by exploiting the interaction between gelatin and the catechol structures. First, we confirmed the interaction between heat-stabilized gelatin and flavan-3-ol derivatives, including synthesized compounds. When green tea leaf extract containing a large amount of flavan-3-ol derivatives was incubated with gelatin, most of the polyphenol compounds it contained were adsorbed. Because the compounds adsorbed on gelatin could not be eluted, DPPH radical and ABTS radical scavenging activity tests were conducted using the as-prepared gelatin–polyphenol complex. Radical scavenging activity was observed when the compounds were adsorbed on gelatin and heating at 90 °C for 5 min did not have a significant effect on their activity. These results suggest that functional polyphenols can be efficiently concentrated using heat-stabilized gelatin and retain their functionality while adsorbed. Full article
Show Figures

Figure 1

16 pages, 1461 KiB  
Article
Polyphenol-Based Microencapsulated Extracts as Novel Green Insecticides for Sustainable Management of Polyphagous Brown Marmorated Stink Bug (Halyomorpha halys Stål, 1855)
by Ivana Pajač Živković, Slaven Jurić, Marko Vinceković, Marija Andrijana Galešić, Marijan Marijan, Kristina Vlahovićek-Kahlina, Katarina M. Mikac and Darija Lemic
Sustainability 2020, 12(23), 10079; https://doi.org/10.3390/su122310079 - 3 Dec 2020
Cited by 13 | Viewed by 4337
Abstract
The brown marmorated stink bug (Halyomorpha halys Stål, 1855) is an invasive polyphagous species that threatens fruit growing both in the United States and Europe. Many pesticide active ingredients have been studied in H. halys management, but for sustainable fruit growing, [...] Read more.
The brown marmorated stink bug (Halyomorpha halys Stål, 1855) is an invasive polyphagous species that threatens fruit growing both in the United States and Europe. Many pesticide active ingredients have been studied in H. halys management, but for sustainable fruit growing, which implies the reduction of chemical harm to the environment, new safe insecticides should be implemented into the practice. For this purpose, novel green insecticide based on natural polyphenols of species Stevia rebaudiana (Bertoni) Bertoni and Aronia melanocarpa (Michx.) Elliott 1821 was developed. Stevia leaves (SLE) and Aronia pomace (APE) aqueous extracts were prepared using the ultrasound-assisted extraction method. Optimal extraction conditions for bioactive compounds (total polyphenols, flavonoids, anthocyanins, and flavan-3-ols, respectively) and antioxidant activity were determined using response surface methodology. Bioactive compounds rich SLE and APE were encapsulated in calcium alginate microparticles by the ionic gelation method. Physicochemical characteristics (morphology, size, encapsulation efficiency, loading capacity, and swelling) of microparticles showed very good properties with especially high encapsulation efficiency. Fitting to simple Korsmeyer–Peppa’s empirical model revealed that the underlying release mechanism of polyphenols is Fickian diffusion. SLE loaded microparticles showed very good pesticidal efficiency against Halyomorpha halys, especially on younger larval stages after both contact and digestive treatment. Microparticles loaded with APE did not achieve satisfactory digestive efficiency, but a certain toxic impact has been observed at contact application on all H. halys growth stages. Microparticles loaded with SLS exhibited prolonged insecticidal action against H. halys and could be a potential candidate as a green insecticide whose application could increase fruit growing safety. Full article
(This article belongs to the Special Issue Sustainable Fruit Growing: From Orchard to Table)
Show Figures

Figure 1

22 pages, 1661 KiB  
Review
Advances in Biosynthesis and Biological Functions of Proanthocyanidins in Horticultural Plants
by Dan Yu, Ting Huang, Bin Tian and Jicheng Zhan
Foods 2020, 9(12), 1774; https://doi.org/10.3390/foods9121774 - 30 Nov 2020
Cited by 53 | Viewed by 6113
Abstract
Proanthocyanidins are colorless flavonoid polymers condensed from flavan-3-ol units. They are essential secondary plant metabolites that contribute to the nutritional value and sensory quality of many fruits and the related processed products. Mounting evidence has shown that the accumulation of proanthocyanidins is associated [...] Read more.
Proanthocyanidins are colorless flavonoid polymers condensed from flavan-3-ol units. They are essential secondary plant metabolites that contribute to the nutritional value and sensory quality of many fruits and the related processed products. Mounting evidence has shown that the accumulation of proanthocyanidins is associated with the resistance of plants against a broad spectrum of abiotic and biotic stress conditions. The biosynthesis of proanthocyanidins has been examined extensively, allowing for identifying and characterizing the key regulators controlling the biosynthetic pathway in many plants. New findings revealed that these specific regulators were involved in the proanthocyanidins biosynthetic network in response to various environmental conditions. This paper reviews the current knowledge regarding the control of key regulators in the underlying proanthocyanidins biosynthetic and molecular mechanisms in response to environmental stress. Furthermore, it discusses the directions for future research on the metabolic engineering of proanthocyanidins production to improve food and fruit crop quality. Full article
(This article belongs to the Special Issue Grape and Wine Phenolics—Contributions to Wine Quality)
Show Figures

Figure 1

14 pages, 2555 KiB  
Article
Flavan-3-ols Content in Red Raspberry Leaves Increases under Blue Led-Light Irradiation
by Ryo Kobori, Seiya Hashimoto, Hayato Koshimizu, Shuich Yakami, Mizuki Hirai, Kenta Noro, Takashi Kawasaki and Akiko Saito
Metabolites 2019, 9(3), 56; https://doi.org/10.3390/metabo9030056 - 21 Mar 2019
Cited by 13 | Viewed by 3923
Abstract
Berry fruits are well known to contain large amounts of polyphenol compounds. Among them, flavan-3-ol derivatives are a group of secondary metabolism compounds currently attracting a great deal of attention owing to their health benefits. Not only the fruits, but also the leaves [...] Read more.
Berry fruits are well known to contain large amounts of polyphenol compounds. Among them, flavan-3-ol derivatives are a group of secondary metabolism compounds currently attracting a great deal of attention owing to their health benefits. Not only the fruits, but also the leaves of raspberry plants, are highly esteemed for tea making around the world and are largely used for food. In this report, we discuss the results of our study on the effect of light and temperature on polyphenol accumulation in raspberry leaves. When raspberry was cultivated in a plant factory unit and light intensity, wavelength, and temperature were varied, the amount of total polyphenol increased under blue light. Quantitative determination of (+)-catechin, (–)-epicatechin, procyanidin B4, flavan-3-ol trimer, which are flavan-3-ol derivatives, was carried out using HPLC, whereby we confirmed their increase under blue light. Semi-quantitative RT-PCR showed correlation between chalcone synthase (CHS) gene expression and the amounts of the compounds measured in the leaves. Full article
(This article belongs to the Special Issue Natural Products Metabolomics)
Show Figures

Figure 1

15 pages, 1073 KiB  
Article
Characterization of Condensed Tannins from Purple Prairie Clover (Dalea purpurea Vent.) Conserved as either Freeze-Dried Forage, Sun-Cured Hay or Silage
by Kai Peng, Qianqian Huang, Zhongjun Xu, Tim A. McAllister, Surya Acharya, Irene Mueller-Harvey, Christopher Drake, Junming Cao, Yanhua Huang, Yuping Sun, Shunxi Wang and Yuxi Wang
Molecules 2018, 23(3), 586; https://doi.org/10.3390/molecules23030586 - 6 Mar 2018
Cited by 20 | Viewed by 4957
Abstract
Conservation methods have been shown to affect forage nutrient composition and value, but little information is available about the effect of forage conservation on plant condensed tannins (CT). The objective of this study was to assess the effects of conservation method on the [...] Read more.
Conservation methods have been shown to affect forage nutrient composition and value, but little information is available about the effect of forage conservation on plant condensed tannins (CT). The objective of this study was to assess the effects of conservation method on the concentration, chemical composition and biological activity of CT. Whole-plant purple prairie clover (PPC, Dalea purpurea Vent.) was harvested at full flower and conserved as freeze-dried forage (FD), hay (HAY) or silage (SIL). Concentration of CT in conserved PPC was determined by the butanol-HCl-acetone method. Structural composition, protein-precipitation capacity and anti-bacterial activity of CT isolated from conserved forage were determined by in situ thiolytic degradation followed by HPLC-MS analysis, a protein precipitation assay using bovine serum albumin and ribulose 1,5-disphosphate carboxylase as model proteins and by an Escherichia coli (E. coli) growth test, respectively. Conservation method had no effect on concentration of total CT, but ensiling decreased (p < 0.001) extractable CT and increased (p < 0.001) protein- and fiber-bound CT. In contrast, hay-making only increased (p < 0.01) protein-bound CT. Regardless of conservation method, epigallocatechin (EGC), catechin (C) and epicatechin (EC) were the major flavan-3-ol units, and gallocatechin (GC) was absent from both terminal and extension units of PPC CT. The SIL CT had the lowest (p < 0.001) EGC, but the highest (p < 0.01) EC in the extension units. Similarly, SIL CT exhibited a lower (p < 0.001) mean degree of polymerization (mDP), but higher (p < 0.001) procyanidins (PC) than FD or HAY CT. The protein-precipitating capacity of CT in conserved PPC ranked (p < 0.001) as FD > HAY > SIL. E. coli growth n M9 medium was inhibited by 25–100 µg/mL of CT isolated from FD, HAY and SIL (p < 0.05), but preservation method had no effect on the ability of CT to inhibit bacterial growth. The results demonstrated that ensiling decreased the extractability and protein-precipitating capacity of CT by increasing the proportions of PC. Purple prairie clover conserved as hay retained more biologically active CT than if it was conserved as silage. Full article
Show Figures

Figure 1

18 pages, 8684 KiB  
Article
Characterization of Proanthocyanidin Oligomers of Ephedra sinica
by Joanna Orejola, Yosuke Matsuo, Yoshinori Saito and Takashi Tanaka
Molecules 2017, 22(8), 1308; https://doi.org/10.3390/molecules22081308 - 6 Aug 2017
Cited by 17 | Viewed by 7502
Abstract
Ephedra sinica, an important plant in Chinese traditional medicine, contains a complex mixture of proanthocyanidin oligomers as major constituents; however, only the minor components have been chemically characterized. In this study, oligomers with relatively large molecular weights, which form the main body [...] Read more.
Ephedra sinica, an important plant in Chinese traditional medicine, contains a complex mixture of proanthocyanidin oligomers as major constituents; however, only the minor components have been chemically characterized. In this study, oligomers with relatively large molecular weights, which form the main body of the proanthocyanidin fractions, were separated by adsorption and size-exclusion chromatography. Acid-catalyzed degradation in the presence of mercaptoethanol or phloroglucinol led to the isolation of 18 fragments, the structures of which were elucidated from their experimental and TDDFT-calculated ECD spectra. The results indicated that (−)-epigallocatechin was the main extension unit, while catechin, the A-type epigallocatechin–gallocatechin dimer, and the A-type epigallocatechin homodimer, were identified as the terminal units. Among the degradation products, thioethers of gallocatechin with 3,4-cis configurations, a B-type prodelphinidin dimer, a prodelphinidin trimer with both A- and B-type linkages, and a prodelphinidin dimer with an α-substituted A-type linkage were new compounds. In addition, a phloroglucinol adduct of an A-type prodelphinidin dimer, a doubly-linked phloroglucinol adduct of epigallocatechin, and a unique product with a flavan-3-ol skeleton generated by the rearrangement of the aromatic rings were also isolated. Full article
Show Figures

Figure 1

18 pages, 5317 KiB  
Article
Profile of Polyphenol Compounds of Five Muscadine Grapes Cultivated in the United States and in Newly Adapted Locations in China
by Zheng Wei, Jianming Luo, Yu Huang, Wenfeng Guo, Yali Zhang, Huan Guan, Changmou Xu and Jiang Lu
Int. J. Mol. Sci. 2017, 18(3), 631; https://doi.org/10.3390/ijms18030631 - 14 Mar 2017
Cited by 31 | Viewed by 5709
Abstract
Polyphenol compositions and concentrations in skins and seeds of five muscadine grapes (cv. “Noble”, “Alachua”, “Carlos”, “Fry”, and “Granny Val”) cultivated in the United States (Tallahassee-Florida, TA-FL) and South China (Nanning-Guangxi, NN-GX and Pu’er-Yunnan, PE-YN) were investigated, using ultra performance liquid chromatography tandem [...] Read more.
Polyphenol compositions and concentrations in skins and seeds of five muscadine grapes (cv. “Noble”, “Alachua”, “Carlos”, “Fry”, and “Granny Val”) cultivated in the United States (Tallahassee-Florida, TA-FL) and South China (Nanning-Guangxi, NN-GX and Pu’er-Yunnan, PE-YN) were investigated, using ultra performance liquid chromatography tandem triple quadrupole time-of-flight mass spectrometry (UPLC Triple TOF MS/MS). Fourteen ellagitannins were newly identified in these muscadine grapes. The grapes grown in NN-GX accumulated higher levels of ellagic acid, methyl brevifolin carboxylate, and ellagic acid glucoside in skins, and penta-O-galloyl-glucose in seeds. In PE-YN, more flavonols were detected in skins, and higher contents of flavan-3-ols, ellagic acid, and methyl gallate were identified in seeds. Abundant seed gallic acid and flavonols were found among the grapes grown in TA-FL. Based on principal component analysis (PCA) of 54 evaluation parameters, various cultivars grown in different locations could be grouped together and vice versa for the same cultivar cultivated in different regions. This is the result of the interaction between genotype and environmental conditions, which apparently influences the polyphenol synthesis and accumulation. Full article
(This article belongs to the Special Issue Biological Activity of Natural Secondary Metabolite Products)
Show Figures

Graphical abstract

13 pages, 2288 KiB  
Article
A Fast and Robust UHPLC-MRM-MS Method to Characterize and Quantify Grape Skin Tannins after Chemical Depolymerization
by Lucie Pinasseau, Arnaud Verbaere, Maryline Roques, Emmanuelle Meudec, Anna Vallverdú-Queralt, Nancy Terrier, Jean-Claude Boulet, Véronique Cheynier and Nicolas Sommerer
Molecules 2016, 21(10), 1409; https://doi.org/10.3390/molecules21101409 - 21 Oct 2016
Cited by 27 | Viewed by 8130
Abstract
A rapid, sensitive, and selective analysis method using ultra high performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS) has been developed for the characterization and quantification of grape skin flavan-3-ols after acid-catalysed depolymerization in the presence of phloroglucinol (phloroglucinolysis). The compound detection [...] Read more.
A rapid, sensitive, and selective analysis method using ultra high performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS) has been developed for the characterization and quantification of grape skin flavan-3-ols after acid-catalysed depolymerization in the presence of phloroglucinol (phloroglucinolysis). The compound detection being based on specific MS transitions in Multiple Reaction Monitoring (MRM) mode, this fast gradient robust method allows analysis of constitutive units of grape skin proanthocyanidins, including some present in trace amounts, in a single injection, with a throughput of 6 samples per hour. This method was applied to a set of 214 grape skin samples from 107 different red and white grape cultivars grown under two conditions in the vineyard, irrigated or non-irrigated. The results of triplicate analyses confirmed the robustness of the method, which was thus proven to be suitable for high-throughput and large-scale metabolomics studies. Moreover, these preliminary results suggest that analysis of tannin composition is relevant to investigate the genetic bases of grape response to drought. Full article
(This article belongs to the Special Issue Flavonoids: From Structure to Health Issues)
Show Figures

Figure 1

16 pages, 1083 KiB  
Article
Structure–Activity Relationship of Oligomeric Flavan-3-ols: Importance of the Upper-Unit B-ring Hydroxyl Groups in the Dimeric Structure for Strong Activities
by Yoshitomo Hamada, Syota Takano, Yoshihiro Ayano, Masahiro Tokunaga, Takahiro Koashi, Syuhei Okamoto, Syoma Doi, Masahiko Ishida, Takashi Kawasaki, Masahiro Hamada, Noriyuki Nakajima and Akiko Saito
Molecules 2015, 20(10), 18870-18885; https://doi.org/10.3390/molecules201018870 - 16 Oct 2015
Cited by 16 | Viewed by 6255
Abstract
Proanthocyanidins, which are composed of oligomeric flavan-3-ol units, are contained in various foodstuffs (e.g., fruits, vegetables, and drinks) and are strongly biologically active compounds. We investigated which element of the proanthocyanidin structure is primarily responsible for this functionality. In this study, we elucidate [...] Read more.
Proanthocyanidins, which are composed of oligomeric flavan-3-ol units, are contained in various foodstuffs (e.g., fruits, vegetables, and drinks) and are strongly biologically active compounds. We investigated which element of the proanthocyanidin structure is primarily responsible for this functionality. In this study, we elucidate the importance of the upper-unit of 4–8 condensed dimeric flavan-3-ols for antimicrobial activity against Saccharomyces cerevisiae (S. cerevisiae) and cervical epithelioid carcinoma cell line HeLa S3 proliferation inhibitory activity. To clarify the important constituent unit of proanthocyanidin, we synthesized four dimeric compounds, (−)-epigallocatechin-[4,8]-(+)-catechin, (−)-epigallocatechin-[4,8]-(−)-epigallocatechin, (−)-epigallocatechin-[4,8]-(−)-epigallocatechin-3-O-gallate, and (+)-catechin-[4,8]-(−)-epigallocatechin and performed structure–activity relationship (SAR) studies. In addition to antimicrobial activity against S. cerevisiae and proliferation inhibitory activity on HeLa S3 cells, the correlation of 2,2-diphenyl-l-picrylhydrazyl radical scavenging activity with the number of phenolic hydroxyl groups was low. On the basis of the results of our SAR studies, we concluded that B-ring hydroxyl groups of the upper-unit of the dimer are crucially important for strong and effective activity. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

16 pages, 1575 KiB  
Article
Salix daphnoides: A Screening for Oligomeric and Polymeric Proanthocyanidins
by Stefan Wiesneth, Frank Petereit and Guido Jürgenliemk
Molecules 2015, 20(8), 13764-13779; https://doi.org/10.3390/molecules200813764 - 29 Jul 2015
Cited by 16 | Viewed by 6897
Abstract
In the present study, a qualitative analysis of proanthocyanidins (PAs) from an aqueous-methanolic extract of Salix daphnoides VILL. bark is described. Procyanidin B1 (1), B2 (2), B3 (3), B4 (4), C1 (5), epicatechin-(4 [...] Read more.
In the present study, a qualitative analysis of proanthocyanidins (PAs) from an aqueous-methanolic extract of Salix daphnoides VILL. bark is described. Procyanidin B1 (1), B2 (2), B3 (3), B4 (4), C1 (5), epicatechin-(4β→8)-epicatechin-(4β→8)-catechin (6) and epicatechin-(4β→8)-epicatechin-(4β→8)-epicatechin-(4β→8)-catechin (7) have been isolated by a combination of different chromatographic separations on Sephadex® LH-20-, MCI®-, Diol-and RP-18-phases. Mass spectrometry, 1D- and 2D-NMR, circular dichroism and polarimetry were used for their structure elucidation and verification by comparison with the literature. Additionally, two fractions of very polar flavan-3-ols were compared: “regular” polymeric PAs received at the very end of the Sephadex® LH-20 chromatography showing no mobility on silica TLC and “unusual” PAs with the same RF-value but already eluting together with flavonoids in the Sephadex® LH-20 system. These “unusual” PAs were subsequently enriched by centrifugal partition chromatography (CPC). 13C-NMR, polarimetry, thiolysis, acid hydrolysis and phloroglucinol degradation were used to characterize both fractions. Differences in the composition of different flavan-3-ol units and the middle chain length were observed. Full article
Show Figures

Figure 1

11 pages, 334 KiB  
Article
Inhibitory Activity of Synthesized Acetylated Procyanidin B1 Analogs against HeLa S3 Cells Proliferation
by Syuhei Okamoto, Sayaka Ishihara, Taisuke Okamoto, Syoma Doi, Kota Harui, Yusuke Higashino, Takashi Kawasaki, Noriyuki Nakajima and Akiko Saito
Molecules 2014, 19(2), 1775-1785; https://doi.org/10.3390/molecules19021775 - 4 Feb 2014
Cited by 17 | Viewed by 9621
Abstract
Proanthocyanidins, also known as condensed tannins and/or oligomeric flavonoids, occur in many edible plants and have various interesting biological activities. Previously, we reported a synthetic method for the preparation of various procyanidins in pure form and described their biological activities. Here, we describe [...] Read more.
Proanthocyanidins, also known as condensed tannins and/or oligomeric flavonoids, occur in many edible plants and have various interesting biological activities. Previously, we reported a synthetic method for the preparation of various procyanidins in pure form and described their biological activities. Here, we describe the synthesis of procyanidin B1 acetylated analogs and discuss their inhibition activities against HeLa S3 cell proliferation. Surprisingly, the lower-unit acetylated procyanidin B1 strongly inhibited the proliferation of HeLa S3 cells. This molecule showed much stronger inhibitory activity than did epigallocatechin-3-O-gallate (EGCG), green tea polyphenol, and dimeric compounds that included EGCG as a unit. This result suggests that the phenolic hydroxyl groups of the upper-units in flavan-3-ols are important for their inhibitory activity against cancer cell proliferation and that a hydrophobic lower unit dimer enhances this activity. Full article
(This article belongs to the Special Issue Structure-Activity Relationship of Flavonoids)
Show Figures

Figure 1

Back to TopTop