Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = fine particle dose (FPD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 480 KiB  
Article
Aerosol Characteristics of Nebulized Tranexamic Acid 100 mg/mL for Hemoptysis Treatment—Proof-of-Concept Study
by Gerrit Seifert, Frank Erdnüß, Wolfgang Kamin and Irene Krämer
J. Pharm. BioTech Ind. 2025, 2(3), 12; https://doi.org/10.3390/jpbi2030012 - 28 Jul 2025
Viewed by 206
Abstract
Background: Off-label nebulization of tranexamic acid (TXA) solution is common practice for the treatment of hemoptysis. However, data regarding nebulization protocols, resulting aerodynamic parameters of the generated aerosol, and corresponding biopharmaceutical parameters are missing. The aim of this in vitro study was to [...] Read more.
Background: Off-label nebulization of tranexamic acid (TXA) solution is common practice for the treatment of hemoptysis. However, data regarding nebulization protocols, resulting aerodynamic parameters of the generated aerosol, and corresponding biopharmaceutical parameters are missing. The aim of this in vitro study was to investigate the aerosol characteristics of nebulized sterile, aqueous TXA solution. Methods: TXA solution 100 mg/mL was nebulized for 2 min by a multi-dose vibrating mesh nebulizer using 15 L/min and 30 L/min air flow rates. The generated aerosol was analyzed by a Next Generation Cascade Impactor. For each air flow rate, the mean Fine Particle Dose (FPD), Fine Particle Fraction (FPF), the Mass Median Aerodynamic Diameter (MMAD), and Geometric Standard Deviation (GSD) were quantified. Results: Nebulization at 15 L/min air flow rate resulted in a MMAD of 6.68 ± 0.23 µm and GSD of 2.02 ± 0.16. The FPD < 5 µm was 16.56 ± 0.45 mg, the FPF < 5 µm 28.91 ± 3.40%. Nebulization at 30 L/min air flow rate revealed a MMAD of 5.18 ± 0.12 µm and GSD of 2.14 ± 0.10. The FPD < 5 µm was 16.30 ± 1.38 mg, the FPF < 5 µm 35.43 ± 0.59%. Conclusions: Nebulization of TXA 100 mg/mL solution by a specified vibrating mesh nebulizer generated an aerosol particle distribution and deposition pattern suitable for the treatment of hemoptysis with bronchial origin. Full article
Show Figures

Figure 1

17 pages, 2453 KiB  
Article
Development and Characterization of Novel Combinations and Compositions of Nanostructured Lipid Carrier Formulations Loaded with Trans-Resveratrol for Pulmonary Drug Delivery
by Iftikhar Khan, Sunita Sunita, Nozad R. Hussein, Huner K. Omer, Abdelbary Elhissi, Chahinez Houacine, Wasiq Khan, Sakib Yousaf and Hassaan A. Rathore
Pharmaceutics 2024, 16(12), 1589; https://doi.org/10.3390/pharmaceutics16121589 - 12 Dec 2024
Cited by 2 | Viewed by 1850
Abstract
Background/Objectives: This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers. Methods: Novel TRES-NLC formulations (F1–F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan [...] Read more.
Background/Objectives: This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers. Methods: Novel TRES-NLC formulations (F1–F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan 116) was combined with four liquid lipids (Capryol 90, Lauroglycol 90, Miglyol 810, and Tributyrin) in three different ratios (10:90, 50:50, and 90:10 w/w), with a surfactant (Tween 80) in two different concentrations (0.5 and 1.5%), and a co-surfactant, soya phosphatidylcholine (SPC S-75; 50 mg). Results: Amongst the analyzed 24 TR-NLC formulations, F8, F14, and F22 were selected based on their physicochemical stability when freshly prepared and following storage (4 weeks 25 °C), as well as in terms of particle size (<145 nm), polydispersity index (PDI; <0.21) and entrapment efficiency (>96%). Furthermore, F14 showed greater stability at 4 and 25 °C for six months and exhibited enhanced aerosolization performance, demonstrating the greater deposition of TRES in the later stages of the next-generation impactor (NGI) when using an air-jet nebulizer than when using an ultrasonic nebulizer. The F14 formulation exhibited greater stability and release in acetate buffer (pH 5.4), with a cumulative release of 95%. Conclusions: Overall, formulation F14 in combination with an air-jet nebulizer was identified as a superior combination, demonstrating higher emitted dose (ED; 80%), fine particle dose (FPD; 1150 µg), fine particle fraction (FPF; 24%), and respirable fraction (RF; 94%). These findings are promising in the optimization and development of NLC formulations, highlighting their versatility and targeting the pulmonary system via nebulization. Full article
Show Figures

Figure 1

17 pages, 1786 KiB  
Article
Effect of Inhalation Profile on Delivery of Treprostinil Palmitil Inhalation Powder
by Helena Gauani, Thomas Baker, Zhili Li, Vladimir S. Malinin, Walter R. Perkins, Eugene J. Sullivan and David Cipolla
Pharmaceutics 2023, 15(3), 934; https://doi.org/10.3390/pharmaceutics15030934 - 14 Mar 2023
Cited by 3 | Viewed by 3395
Abstract
Treprostinil palmitil (TP), a prodrug of treprostinil, is being developed as an inhalation powder (TPIP) for the treatment of patients with pulmonary arterial hypertension (PAH) and pulmonary hypertension due to interstitial lung disease (PH-ILD). In ongoing human clinical trials, TPIP is administered via [...] Read more.
Treprostinil palmitil (TP), a prodrug of treprostinil, is being developed as an inhalation powder (TPIP) for the treatment of patients with pulmonary arterial hypertension (PAH) and pulmonary hypertension due to interstitial lung disease (PH-ILD). In ongoing human clinical trials, TPIP is administered via a commercially available high resistance (HR) RS01 capsule-based dry powder inhaler (DPI) device manufactured by Berry Global (formerly Plastiape), which utilizes the patient’s inspiratory flow to provide the required energy to deagglomerate and disperse the powder for delivery to their lungs. In this study, we characterized the aerosol performance of TPIP in response to changes in inhalation profiles to model more realistic use scenarios, i.e., for reduced inspiratory volumes and with inhalation acceleration rates that differ from those described in the compendia. The emitted dose of TP for all combinations of inhalation profiles and volumes ranged narrowly between 79 and 89% for the 16 and 32 mg TPIP capsules at the 60 LPM inspiratory flow rate but was reduced to 72–76% for the 16 mg TPIP capsule under the scenarios at the 30 LPM peak inspiratory flow rate. There were no meaningful differences in the fine particle dose (FPD) at all conditions at 60 LPM with the 4 L inhalation volume. The FPD values for the 16 mg TPIP capsule ranged narrowly between 60 and 65% of the loaded dose for all inhalation ramp rates with a 4 L volume and at both extremes of ramp rates for inhalation volumes down to 1 L, while the FPD values for the 32 mg TPIP capsule ranged between 53 and 65% of the loaded dose for all inhalation ramp rates with a 4 L volume and at both extremes of ramp rates for inhalation volumes down to 1 L for the 60 LPM flow rate. At the 30 LPM peak flow rate, the FPD values for the 16 mg TPIP capsule ranged narrowly between 54 and 58% of the loaded dose at both extremes of the ramp rates for inhalation volumes down to 1 L. Based on these in vitro findings, the TPIP delivery system appears not to be affected by the changes in inspiratory flow profiles or inspiratory volumes that might be expected to occur in patients with PAH or PH associated with underlying lung conditions such as ILD. Full article
(This article belongs to the Special Issue Development and Evaluation of Inhalable Dry Powder Formulations)
Show Figures

Figure 1

16 pages, 2529 KiB  
Article
Compatible Stability and Aerosol Characteristics of Atrovent® (Ipratropium Bromide) Mixed with Salbutamol Sulfate, Terbutaline Sulfate, Budesonide, and Acetylcysteine
by Yiting Chen, Shilin Du, Zhirui Zhang, Wenxiu He, Enhao Lu, Rui Wang, Xianyi Sha and Yan Ma
Pharmaceutics 2020, 12(8), 776; https://doi.org/10.3390/pharmaceutics12080776 - 15 Aug 2020
Cited by 11 | Viewed by 6811
Abstract
(1) Background: It is common practice in the treatment of respiratory diseases to mix different inhalation solutions for simultaneous inhalation. At present, a small number of studies have been published that evaluate the physicochemical compatibility and aerosol characteristics of different inhalation medications. However, [...] Read more.
(1) Background: It is common practice in the treatment of respiratory diseases to mix different inhalation solutions for simultaneous inhalation. At present, a small number of studies have been published that evaluate the physicochemical compatibility and aerosol characteristics of different inhalation medications. However, none of them studied Atrovent®. Our work aims to address the lack of studies on Atrovent®. (2) Methods: Portions of admixtures were withdrawn at certain time intervals after mixing and were tested by pH determination, osmolarity measurement, and high-performance liquid chromatography (HPLC) assay of each active ingredient as measures of physicochemical compatibility. The geometrical and aerosol particle size distribution, active drug delivery rate, and total active drug delivered were measured to characterize aerosol behaviors. (3) Results: During the testing time, no significant variation was found in the pH value, the osmotic pressure, or the active components of admixtures. With the increase in nebulization volume after mixing, fine particle dose (FPD) and total active drug delivered showed statistically significant improvements, while the active drug delivery rate decreased compared to the single-drug preparations. (4) Conclusions: These results endorse the physicochemical compatibility of Atrovent® over 1 h when mixed with other inhalation medications. Considering aerosol characteristics, simultaneous inhalation is more efficient. Full article
(This article belongs to the Special Issue Drug Delivery through Pulmonary)
Show Figures

Figure 1

Back to TopTop