Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = ferrotitaniferous sands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5419 KiB  
Article
Synthesis of Alpha Ferrous Oxalate Dihydrate from Ferrotitaniferous Mineral Sands via Hot Pressurized Aqueous Oxalic Acid: Kinetics and Characterization
by Carla S. Valdivieso-Ramírez, Salomé Galeas, Marleny D. A. Saldaña, Patricia I. Pontón, Víctor H. Guerrero, Karla Vizuete, Alexis Debut and Bojan A. Marinkovic
Minerals 2024, 14(9), 891; https://doi.org/10.3390/min14090891 - 30 Aug 2024
Viewed by 1539
Abstract
Ferrous oxalate dihydrate is a versatile organic mineral with applications across fields. However, little is known about the feasibility of its synthesis directly from iron-bearing minerals using binary subcritical water (sCW) systems and its associated kinetics. In this study, the sCW+oxalic acid system [...] Read more.
Ferrous oxalate dihydrate is a versatile organic mineral with applications across fields. However, little is known about the feasibility of its synthesis directly from iron-bearing minerals using binary subcritical water (sCW) systems and its associated kinetics. In this study, the sCW+oxalic acid system at either 115 °C or 135 °C was investigated as a reaction medium for ferrous oxalate dihydrate (α-FeC2O4∙2H2O) synthesis, starting from ferrotitaniferous sands. The kinetics of the synthesis reaction were studied, and the physicochemical characterization of the as-synthetized ferrous oxalates was performed. Overall, the sCW synthesis was temperature-dependent, following second-order reaction kinetics according to the proposed precipitation pathway. A high reaction rate constant, significantly high yields (up to 89%), and reduced reaction times (2–8 h) were evident at 135 °C. The as-synthetized product corresponded to the monoclinic α-FeC2O4∙2H2O, showed relatively high specific surface areas (from 31.9 to 33.7 m2∙g−1), and exhibited band gap energies within the visible light range (~2.77 eV). These results suggest that α-FeC2O4∙2H2O can be synthesized using an organic dicarboxylic acid and iron-rich, widely available, low-cost mineral precursors. In addition, the as-prepared α-FeC2O4∙2H2O could be further optimized and tested for catalytic and visible light photocatalytic applications. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 3519 KiB  
Article
Adsorptive–Photocatalytic Composites of α-Ferrous Oxalate Supported on Activated Carbon for the Removal of Phenol under Visible Irradiation
by Salomé Galeas, Víctor H. Guerrero, Patricia I. Pontón, Carla S. Valdivieso-Ramírez, Paul Vargas-Jentzsch, Paola Zárate and Vincent Goetz
Molecules 2024, 29(15), 3690; https://doi.org/10.3390/molecules29153690 - 4 Aug 2024
Viewed by 1553
Abstract
Adsorptive–photocatalytic composites based on activated carbon (AC) and α-ferrous oxalate dihydrate (α-FOD) were synthesized by an original two-step method and subsequently used for the removal of phenol from aqueous solutions. To obtain the composites, ferrotitaniferous black mineral sands (0.6FeTiO3·0.4Fe2O [...] Read more.
Adsorptive–photocatalytic composites based on activated carbon (AC) and α-ferrous oxalate dihydrate (α-FOD) were synthesized by an original two-step method and subsequently used for the removal of phenol from aqueous solutions. To obtain the composites, ferrotitaniferous black mineral sands (0.6FeTiO3·0.4Fe2O3) were first dissolved in an oxalic acid solution at ambient pressure, and further treated under hydrothermal conditions to precipitate α-FOD on the AC surface. The ratio of oxalic acid to the mineral sand precursor was tuned to obtain composites with 8.3 and 42.7 wt.% of α-FOD on the AC surface. These materials were characterized by X-ray powder diffraction, scanning electron microscopy, and the nitrogen adsorption–desorption method. The phenol removal efficiency of the composites was determined during 24 h of adsorption under dark conditions, followed by 24 h of adsorption–photocatalysis under visible light irradiation. AC/α-FOD composites with 8.3 and 42.7 wt.% of α-FOD adsorbed 60% and 51% of phenol in 24 h and reached a 90% and 96% removal efficiency after 12 h of irradiation, respectively. Given its higher photocatalytic response, the 42.7 wt.% α-FOD composite was also tested during successive cycles of adsorption and adsorption–photocatalysis. This composite exhibited a reasonable level of cyclability (~99% removal after four alternated dark/irradiated cycles of 24 h and ~68% removal after three simultaneous adsorption–photocatalysis cycles of 24 h). The promising performance of the as-prepared composites opens several opportunities for their application in the effective removal of organic micropollutants from water. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Graphical abstract

15 pages, 5821 KiB  
Article
One-Step Synthesis of Iron and Titanium-Based Compounds Using Black Mineral Sands and Oxalic Acid under Subcritical Water Conditions
by Carla S. Valdivieso-Ramírez, Patricia I. Pontón, Anja Dosen, Bojan A. Marinkovic and Victor H. Guerrero
Minerals 2022, 12(3), 306; https://doi.org/10.3390/min12030306 - 28 Feb 2022
Cited by 5 | Viewed by 4597
Abstract
Black mineral sands are widely used to obtain titanium dioxide, titanium, and, more recently, a variety of iron–titanium oxide nanostructures. Highly corrosive mineral acids or alkalis are commonly employed for this purpose. Hence, it is desirable to find eco-friendly ways to process these [...] Read more.
Black mineral sands are widely used to obtain titanium dioxide, titanium, and, more recently, a variety of iron–titanium oxide nanostructures. Highly corrosive mineral acids or alkalis are commonly employed for this purpose. Hence, it is desirable to find eco-friendly ways to process these minerals, deriving high-added value materials. In this study, an Ecuadorian mineral sand precursor (0.6FeTiO3∙0.4Fe2O3 solid solution) was treated with oxalic acid aqueous solutions under subcritical water conditions. The synthesis was conducted in a batch reactor operating at 155 °C, 50 bar, and 700 rpm for 12 h, varying the oxalic acid concentration (0.1, 0.5 to 1.0 M). The as-obtained compounds were physically separated, dried, and analyzed by X-ray powder diffraction, scanning electron microscopy, and Raman spectroscopy. The characterization showed that the precursor was completely converted into two main products, ferrous oxalate, and titanium dioxide polymorphs. Rutile was always found in the as-synthesized products, while anatase only crystallized with high oxalic acid concentrations (0.5 and 1.0 M). These results open the possibility to develop more sustainable routes to synthesize iron and titanium-based materials with promising applications. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 5099 KiB  
Article
Towards Iron-Titanium Oxide Nanostructures from Ecuadorian Black Mineral Sands
by Karina J. Lagos, Bojan A. Marinkovic, Alexis Debut, Karla Vizuete, Víctor H. Guerrero, Emilio Pardo and Patricia I. Pontón
Minerals 2021, 11(2), 122; https://doi.org/10.3390/min11020122 - 26 Jan 2021
Cited by 11 | Viewed by 3410
Abstract
Ecuadorian black mineral sands were used as starting material for the production of iron-titanium oxide nanostructures. For this purpose, two types of mineral processing were carried out, one incorporating a pre-treatment before conducting an alkaline hydrothermal synthesis (NaOH 10 M at 180 °C [...] Read more.
Ecuadorian black mineral sands were used as starting material for the production of iron-titanium oxide nanostructures. For this purpose, two types of mineral processing were carried out, one incorporating a pre-treatment before conducting an alkaline hydrothermal synthesis (NaOH 10 M at 180 °C for 72 h), and the other prescinding this first step. Nanosheet-assembled flowers and nanoparticle agglomerates were obtained from the procedure including the pre-treatment. Conversely, nanobelts and plate-like particles were prepared by the single hydrothermal route. The nanoscale features of the product morphologies were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. The ilmenite and hematite molar fractions, within the ilmenite-hematite solid solution, in the as-synthetized samples were estimated by Brown’s approach using the computed values of unit-cell volumes from Le Bail adjustments of X-ray powder diffraction (XRPD) patterns. The resulting materials were mainly composed of Fe-rich ilmenite-hematite solid solutions (hematite molar contents ≥0.6). Secondary phases, which possibly belong to lepidocrocite-like or corrugated titanate structures, were also identified. The current study demonstrated the feasibility of employing Ecuadorian mineral resources as low-cost precursors to synthesize high-added-value nanostructures with promising applications in several fields. Full article
(This article belongs to the Special Issue 10th Anniversary of Minerals: Frontiers of Mineral Science)
Show Figures

Figure 1

Back to TopTop